HETEROCYCLES, Vol. 67, No. 1, 2006, pp. 107 - 112. © The Japan Institute of Heterocyclic Chemistry Received, 8th July, 2005, Accepted, 29th August, 2005, Published online, 30th August, 2005. COM-05-S(T)30

SYNTHETIC STUDY OF α**(2,8) OLIGOSIALOSIDE USING** *N***-TROC SIALYL** *N***-PHENYLTRIFLUOROIMIDATE**

Hiroshi Tanaka, Yuji Nishiura, Masaatsu Adachi, and Takashi Takahashi*

Department of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology 2-12-1 Ookayama, Meguro, Tokyo 152-8552, Japan; E-mail: ttak@apc.titech.ac.jp

Abstract – An effective approach for the synthesis of oligo- $\alpha(2,8)$ sialosides using *N*-Troc sialyl donors is described. Glycosylation of *N*-Troc sialoside with *N*-Troc sialyl *N*-phenyltrifluoroimidate and phosphites smoothly proceeded to provide α (2,8) disialosides in good yield and selectivity.

Sialic acids such as Neu5Ac, Neu5Gc and KDN, are often located at the non-reducing end of glycoconjugates on the cell surface through α -glycosidic bonds, and play a central role in cell surface recognition phenomena.¹ Recently, poly- and oligo-sialosides composed of the $\alpha(2,8)$ disialyl unit (1) are found in many glycoproteins as well as glycolipids, and would be important fragments to bind proteins as well as monomeric sialic acid.² However, low availability of the pure sialo-containing glycoconjugates from the natural sources makes it difficult to elucidate their biological activity, and requires an effective methodology for the synthesis of $\alpha(2,8)$ sialosides.

Scheme 1 Strategy for the synthesis of oligo- $\alpha(2,8)$ sialosides

The synthesis of $\alpha(2,8)$ disialyl unit (1) is one of the most problematic processes in chemical oligosaccharide synthesis. ³ The reactivity of the C8 hydroxyl group on sialoside (**3**) towards glycosylation is dramatically reduced by the C1 carboxyl and/or the C5 acetamide group. In addition, the C1 carbonyl group reduces the reactivity of sialyl donor (**2**) towards glycosidation. Furthermore, lack of the stereo-directing group adjacent to the anomeric position makes it difficult to stereoselectivity form the thermodynamically unstable α -glycosidic linkages, and promotes β -elimination during glycosidation. Recently, the sialy donors possessing *N*,*N*-diacetyl,⁴ azido,⁵ *N*-TFA,⁶ *N*-Troc,^{7,8} *N*-trichloroacetyl⁸ and *N*-Fmoc⁸ groups at the C5 position have been reported to exhibit the improved reactivity towards sialylation. We have already reported the one-pot synthesis of sialo-containing oligosaccharides using the *N*-Troc β-thiosialoside. ⁸ The *N*-Troc protected sialyl donors were effective for the synthesis of sialo-containing amino acids and peptides because modification of the *N*-Troc protecting group to the NHAc group can be achieved without racemization of the amino acids and peptides. Herein we report an efficient synthesis of α (2,8) sialosides by glycosidation of *N*-Troc sialyl donors.

We first investigated glycosylation of sialoside at the C8 poition with *N*-Troc sialyl donors varying the leaving groups (Table 1). We selected *N*-phenyl trifluoroimidate and phosphites as leaving groups, which enable activation of the *N*-acetyl sialy donors at low reaction temperature. 9,10 In addition, *N*-phenyl trifluoroimidate would be an effective leaving group for glycosylation of low reactive acceptors.¹¹ Treatment of acceptor (4) with three equivalents of thioglycoside¹² (5a) in the presence of NIS and TfOH in MeCN at -35 ºC provided disaccharides (**6**) in 36% yield with good α-selectivity (Entry 1). Activation of trifluoroimidate (**5b**) with a catalytic amount of TMSOTf at -35 ºC resulted in the improved yield of disaccharide (**6**). Glycosidation of trifluoroimidate (**5b**) at -78 ºC provided disaccharide (**6**) in 67% yield with good α -selectivity (α : β = 81:19). Glycosyl phosphites (5c) and (5d) resulted in the reduced yields of **6** in comparison with imidate (**5b)**. Use of 1.5 equivalents of glycosyl donor (**5b**) ¹³ resulted in good yield of **6**. Structure determination of α-sialoside (**6**α) was achieved by ¹ H NMR spectral analysis based on the empirical roles.¹⁴

Table 1 Glycosylation of sialoside at the C8 position with *N*-Troc sialyl donors varying the leaving groups.

 a The α : β ratio was determined by HPLC analysis based on refractive index detection

Next, we investigated the synthesis of oligo- $\alpha(2,8)$ -sialosides. The glycosyl trifluoroimidate (11) protected with a chloroacetyl group at the C8 hydroxyl group was designed for the synthesis of oligo- $α(2,8)$ sialosides. The chloroacetyl protecting group can be selectively removed after glycosidation. The synthesis of the sialyl donor (**11**) is shown in Scheme 2. Treatment of tetraacetyl *N*-acetyl β-thiosialoside (**7**) with methanesulfonic acid provided amine (**8**). *N*-Acylation of amine (**8**) with TrocOSu, followed by acetalization of the C8 and C9 hydroxyl groups afforded diol (**9**). The remaining hydroxyl group was protected with the acetyl group, followed by regioselectively reductive opening of the benzylidene acetal provided monool (**10**) in 54% overall yield from **7**. Protection of the resulting hydroxyl group with chloroacetyl group provided fully protected thioglycoside (**11**) in 98% yield. Hydrolysis of the thioglycoside, followed by coupling with imidoyl chloride (**13**) afforded the sialyl trifluoroimidate (**14**) in good yield.

Scheme 2 Reagents and conditions: (a) MsOH, MeOH, 60° C. (b) TrocOSu, NEt₃, MeCN, H₂O, rt. (c) PhCH(OMe)₂, CSA, MeCN, rt. (d) Ac₂O, py, CH₂Cl₂, DMAP, (e) BH₃•NMe₃, AlCl₃, THF, MS4A, 0 °C, 54% from **7**. (f) chloroacetyl choride, py, CH₂Cl₂, rt, 98%. (g) NBS, acetone, H₂O, 0 °C, 90%. (h) Cs₂CO₃, acetone, 0 °C, 80%, α : β = 88:12.

Coupling of the sialyl donor (**14**) with acceptor (**4**) was examined (Scheme 3). Treatment of acceptor (**4**) with three equivalents of the glycosyl imidate (**14**) in the presence of a catalytic amount of TMSOTf in CH3CN at -78 ºC provided disaccharides (**6**) in 58% yield with good α-selectivity. Removal of the chloroacetyl group with thiourea provided the disaccharide acceptor (**16**) in 80% yield. Next, the synthesis of trisialoside (17) was examined. Next we examined the synthesis of tri- $\alpha(2,8)$ sialoside (17). Treatment of the acceptor (**16**) with three equivalents of glycosyl imidate (**14**) under the same glycosidation conditions unfortunately provided trisaccharide (**17**) in only 6% as an anomeric mixture, whose structure was confirmed by MS and ¹H NMR spectra. The ratio of the anomeric isomers could not be estimated by the information. These results indicate that reactivity of disaccharides (**16**) towards glycosylation was dramatically reduced in comparison with monosialoside (**4**).

Finally, deprotection of α(2,8) disialoside was examined. The *N*-Troc and acetyl groups and methyl esters of **16** were spontaneously hydrolyzed under the standard basic conditions to provide amino acid (**18**). Treatment of **18** with acetic anhydride, followed by exposure to NaOMe in MeOH afforded α(2,8)-dissialoside (**19**) possessing the two benzyl groups in 77% yield based on **15**. Hydrogenolysis of the benzyl ethers in the presence of $Pd(OH)$ ₂ provided the fully deprotected $\alpha(2,8)$ -dissialoside $(20)^{15}$ in 96% yield. The coupling constants ${}^{3}J_{\text{Cl-H3ax}}$ (5.8 and 5.1 Hz) of 19 indicate that the two glycosidic linkages are $α$ -configuration.¹⁶

Scheme 3 Reagents and conditions: (a) 14 (3.0 eq.) TMSOTf (0.3 eq.), CH₂Cl₂/MeCN (2/3), MS3A, -78 ºC, 58%, α:β = 83:17. (b) thiourea, 2,6-lutidine, DMF, 70 ºC. (c) **14** (3.0 eq.) TMSOTf (0.3 eq.), CH₂Cl₂/MeCN (2/3), MS3A, -78 °C, 6% as anomeric mixture. (d) LiOH•H₂O, EtOH, H₂O, 80 °C. (e) Ac₂O, MeOH, then NaOMe, MeOH, 77% from **15**. (g) Pd(OH)₂, H₂ (1 atm), H₂O, MeOH, 96%.

In conclusion, we reported an effective approach for the synthesis of oligo- $\alpha(2,8)$ sialosides using *N*-Troc sialyl donors. Glycosylation of the *N*-Troc sialoside (**4**) with the *N*-Troc sialyl *N*-phenyltrifluoroimidates provided $\alpha(2,8)$ sialosides in good yield and selectivity. The coupling methodology would be effective for the synthesis of $\alpha(2,8)$ sialo-containing glycoconjugates such as glycosyl amino acids and peptides. Synthesis of various oligosaccharide containing the $\alpha(2,8)$ disialyl unit is in progress.

ACKNOWLEDGEMENTS

This work was supported by a Grand-in Aid for Scientific Research on Priority Area (S) from the Ministry of Education, Culture, Sports, Science, and Technology. (Grant-in-aid No.14103013).

REFERENCES AND NOTES

- 1. T. Angata and A. Varki, *Chem. Rev.*, 2002, **102**, 439.
- 2. C. Sato and K. Kitajima, *Trends Glycosci. Glycotechnol.*, 1999, **11**, 371.
- 3. G.-J. Boons and A. Demchenko, *Chem. Rev.*, 2000, **100**, 4539.
- 4. A. V. Demchenko and G.-J. Boons, *Tetrahedron Lett*., 1998, **39**, 3065.
- 5. C.-S. Yu, K. Niikura, C.-C. Lin, and C.-H. Wong, *Angew. Chem., Int. Ed.*, 2001, **40**, 2900.
- 6. (a) S. Komba, C. Galustian, H. Ishida, T. Feizi, R. Kannagi, and M. Kiso, *Angew. Chem., Int. Ed.,* 1999, **38**, 1131. (b) D. Meo, A. V. Demechenko, and G.-J. Boons, *J. Org. Chem.*, 2001, **66**, 5490.
- 7. H. Ando, Y. Koike, H. Ishida, and M. Kiso, *Tetrahedron Lett.*, 2003, **44**, 6883.
- 8. (a) M. Adachi, H. Tanaka, and T. Takahashi, *Synlett*, 2004, 609. (b) H. Tanaka, M. Adachi, and T. Takahashi, *Chem. Eur. J.*, 2005, **11**, 849.
- 9. S. Cai and B. Yu, *Org. Lett.*, 2003, **5**, 3827.
- 10. (a) T. J. Martin and R. R. Schmidt, *Tetrahedron Lett.*, 1992, **33**, 6123. (b) H. Kondo, Y. Ichikawa, and C.-H. Wong, *J. Am. Chem. Soc.*, 1992, **114**, 8748.
- 11. H. Tanaka, Y. Iwata, D. Takahashi, M. Adachi, and T. Takahashi, *J. Am. Chem. Soc.*, 2005, **127**, 1630.
- 12. C.-T. Ren, C.-S. Chen, and S.-H. Wu, *J. Org. Chem.*, 2002, **67**, 1376.
- 13. Spectra of **5b**: ¹H NMR (400 MHz, CDCl₃) δ 7.28 (br s, 2H), 7.11 (dd, 1H, *J* = 7.7, 7.7 Hz), 6.74 (d, 2H, *J* = 7.7 Hz), 5.42 (dd, 1H, *J*_{6,7} = 1.5 Hz, *J*_{7,8} = 6.8 Hz), 5.27 (d, 1H, NH, *J* = 9.7 Hz), 5.26 (m, 1H), 5.21 (ddd, 1H, *J*3ax.,4 = 10.1 Hz, *J*3eq.,4 = 5.3 Hz, *J*4,5 = 9.7 Hz), 4.92 (d, 1H, *J* = 12.1 Hz), 4.75 (dd, 1H, $J_{5,6} = 10.6$ Hz, $J_{6,7} = 1.5$ Hz), 4.51 (d, 1H, CH₂CCl₃, $J = 12.1$ Hz), 4.37 (dd, 1H, $J_{8,9} = 2.4$ Hz, $J_{\text{gen}} = 12.6$ Hz), 4.13 (dd, 1H, H-9', *J*_{8.9'} = 5.8 Hz, *J*_{gem} = 12.6 Hz), 3.80 (s, 3H, OMe), 3.78 (m, 1H), 2.78 (dd, 1H, H-3eq., $J_{3eq.4}$ = 5.3 Hz, J_{gem} = 13.5 Hz), 2.29 (dd, 1H, $J_{3ax.4}$ = 10.1 Hz, J_{gem} = 13.5 Hz), 2.18, 2.04, 1.99, 1.98 (4s, 12H, Ac); ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 170.4, 170.3, 170.0, 167.3, 154.2, 142.6, 128.8, 124.8, 120.6, 119.4, 97.9, 95.5, 74.6, 73.5, 70.0, 67.9, 67.7, 61.8, 53.0, 51.5, 36.7, 20.9, 20.8, 20.7; IR (KBr) 3324, 3027, 2958, 1746, 1539, 1333, 737 (cm-1).
- 14. (a) U. Dabrowski, H. Friebolin, R. Brossmer, and M. Supp, *Tetrahedron Lett*., 1979, **20**, 4637. (b) H. Paulsen and H. Tietz, *Angew. Chem., Int. Ed*. *Engl*., 1982, **21**, 155.
- 15. Spectra of **20**: $[\alpha]_D^2$ +6.4° (c 1.00, H₂O); ¹H NMR (400 MHz, D₂O) δ 4.16 (m, 1H, H-8), 4.10 (dd, 1H, H-9a, $J_{8.9a} = 3.9$ Hz, $J_{9a.9b} = 11.6$ Hz), $3.49 - 3.88$ (m, 13H), 3.39 (dt, 1H, OC*H₂*, $J = 7.25$ Hz, *J* $= 8.70$ Hz), 2.73 (dd, 1H, H-3'eq., $J_{3'ax,3'ea} = 12.1$ Hz, $J_{3'ea,4'} = 4.35$), 2.61 (dd, 1H, H-3eq., $J_{3ax,3ea} =$ 12.1 Hz, $J_{3eq,4} = 4.35$ Hz), 2.04, 2,00 (2s, 6H, Ac), 1.71 (dd, 1H, H-3'ax., $J_{3'ax,3'eq} = 12.1$ Hz, $J_{3'ax,4'} =$ 12.1), 1.50 – 1.58 (m, 3H, H- 3ax, OCH₂CH₂), 1.25 (br s, 10H, CH₂), 0.83 (t, 3H, $J = 6.8$ Hz) ; ¹³C NMR (100 MHz, D₂O, acetone-*d*₆) δ 175.0 x 2, 173.5, 173.4, 101.3, 100.5, 78.7, 74.2, 72.8, 71.8,

69.8, 68.5, 68.3, 68.0, 65.2, 62.8, 61.8, 52.6, 51.9, 49.0, 40.6, 31.2, 28.6, 28.5, 25.3, 22.4, 22.1 x 2, 13.5; IR (KBr) 3530, 1650, 1418, 1378, 1071, 778 (cm⁻¹). MS (ESI-TOF) calcd for C₃₀H₅₃N₂O₁₇Na [M+Na]⁺713.3, found 713.5.

16. J. Haverkamp, T. Spoormaker, L. Dorland, J. F. G. Vliegenthart, and R. Schauer, *J. Am. Chem. Soc.*, 1979, **101**, 4815.