HETEROCYCLES, Vol. 67, No. 1, 2006, pp. 123 - 128. © The Japan Institute of Heterocyclic Chemistry Received, 25th July, 2005, Accepted, 5th September, 2005, Published online, 6th September, 2005. COM-05-S(T)42

TOTAL SYNTHESIS OF (+)-1893B AIMED AT ESTABLISHING ITS STEREOCHEMISTRY‡

Hiroyuki Yasui, Kunihiro Hirai, Shun Yamamoto, Ken-ichi Takao, and Kin-ichi Tadano*

Department of Applied Chemistry, Keio University, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan tadano@applc.keio.ac.jp

Abstract – The total synthesis of (+)-1893B (**2**) has been completed. The one-pot ring-opening/cross/ring-closing metathesis of (1*S*,2*S*,3*S*,4*R*)-2- (*t*-butyldiphenylsilyloxy)methyl-3-methyl-7-oxabicyclo[2.2.1]hept-5-ene (**4)** provided (1*R*,6*S*,7*S*,8*S*)-7-hydroxymethyl-8-methyl-9-oxabicyclo[4.2.1]nona-2,4 diene (**6**) after deblocking. The epoxy-ring opening of an advanced intermediate (1*R*,6*S*,7*S*,8*S*)-7-[(1*S*,2*S*)-1-methoxymethoxy-2,3-epoxypropyl]-8-methyl-9-oxabi cyclo[4.2.1]nona-2,4-diene (**11a)** with trimethylsilylacetylide, followed by palladium(II)-catalyzed oxidation for construction of the γ-lactone moiety in **2**.

1893A (**1**) and 1893B (proposed to be **2'**)(Figure 1), which exhibit cytotoxic and insecticidal activities, were isolated recently from a marine endophytic fungus in mangroves grown on the coast of South China Sea. ¹ The structure of **1** was determined by X-Ray crystallographic analysis, while the structure of 1893B was tentatively assigned by ¹H-NMR spectral analysis. As a structurally related natural product, $(+)$ -mycoepoxydiene (3) was also isolated.² These natural products (1-3) have a common oxygen-bridged cyclooctadiene core skeleton. After the completion of the total syntheses of (−)-**1** and (+)-**3**, ³ we embarked on the total synthesis of 1893B, envisaging that 1893B possesses the same relative configuration as that of **3.** Herein, we disclose the total synthesis of natural (+)-1893B, thereby establishing its relative and absolute stereochemistry to be **2**.

In the total syntheses of (−)-**1** and (+)-**3**, ³ we demonstrated the usefulness of a ring-expansion strategy by

[‡] This paper is dedicated to Professor Barry M. Trost with respect and admiration on the occasion of his 65th birthday.

Figure 1. Structures of 1893A, 1893B and (+)-mycoepoxydiene

olefin metathesis for the construction of the core 9-oxabicyclo[4.2.1]nona-2,4-diene framework. In fact, an enantioenriched (95% ee) 7-oxabicyclo[2.2.1]hept-2-ene derivative (**4**) underwent ring-opening/cross metathesis (ROM/CM) with 1,3-butadiene, followed by ring-closing metathesis (RCM) of the resulting triene mixture, providing a cyclooctadiene derivative (**5**) in one pot (Scheme 1). Deblocking of the *t*-butyldiphenylsilyl (TBDPS) ether in **5** provided **6**, which was eventually transformed into (−)-**1** and $(+)$ -3. The total synthesis of 1983B was started with this intermediate (6) . Dess-Martin oxidation⁴ of 6 and the subsequent vinyl Grignard addition to the resulting aldehyde provided an inseparable diasteromeric mixture of allylic alcohol (**7a/b**) ⁵ in a ratio of *ca*. 1:1. ⁶ An attempt to separate this mixture (**7a/b**) by a Sharpless asymmetric epoxidation procedure [(−)-DIPT, Ti(O*i*-Pr)4, *t*-BuOOH] resulted in the recovery of the starting mixture.

For complete separation of **7a/b**, we then investigated the acylation with optically active carboxylic acid. Condensation of **7a/b** with (*S*)-*O*-acetylmandelic acid and separation of the products on silica gel provided esters (**8a** and **8b**). In this acylation, a reaction with excess acid and a low temperature was required to prevent epimerization at the α-carbon of the ester. Basic hydrolysis of **8a** and **8b** provided **7a** and **7b**, respectively. To establish the configuration of the introduced allylic carbon in **7b** (and thus

Reagents and conditions: a) Dess-Martin periodinane, CH₂Cl₂; b) CH₂=CHMgBr, THF, 70% for 2 steps; c) (*S*)-*O*-acetylmandelic acid, EDCI·HCl, DMAP, CH₂Cl₂, 47% for **8a**, 51% for **8b**; d) LiOH, 50% aq. MeOH, quant. for **7a**, 98% for **7b**; e) (*R*)-*O*-acetylmandelic acid, EDCI·HCl, DMAP, CH₂Cl₂, 90%.

Scheme 1. Preparation of allylic alcohols (**7a/b**) and determination of their stereochemistries

that in **7a**), the (*R*)-acetylmandelic acid ester (**9b**) of **7b** was also prepared. The chemical shift deference in the ¹ H NMR spectra for **9b** and **8b** [Δδ, δ(**9b**)-δ(**8b**)], as shown in Scheme 1, verified the (R) -configuration.⁷ The stereochemically defined **7b** was subjected to Sharpless VO(acac)₂-madiated oxidation, ⁸ providing an inseparable 1.6:1 diastereomeric mixture of epoxy alcohol (**10**) (Scheme 2). This diastereomeric mixture (**10**) was etherified as the MOM (methoxymethyl) ethers, providing *syn*-isomer (**11a**) (34%) and *anti*-isomer (**11b**) (55%) by chromatographic separation on silica gel. To confirm the stereochemistry at C-2' in **11b** (and thus that of **11a**), the major isomer (**11b**) was converted into isopropylidene acetal (**14**) by 1) a hydride attack on the epoxy ring in **11b**, 2) acidic removal of the MOM group in the resulting epoxy-ring opening product (**12**), and then 3) cyclic acetal formation of the resulting diol (**13**). During NOE difference experiments of **14**, signal enhancements of H-2' (4.2%) and H-7 (8.0%) were observed when H-1' and H-3' (Me), respectively, were irradiated. No NOE was observed between H-1' and H-3'(Me). The coupling constant for J_1 , was 5.1 Hz. On the other hand, compound (**12**) was converted into (*S*)- and (*R*)-*O*-acetylmandelic acid esters (**15** and **16**). The Δδ values [δ(**16**)−δ(**15**)] confirmed the *R*-configuration at C-2' in **12**. The structures of the epoxy alcohols (**11a** and **11b**) were established to be those depicted.

The completion of the total synthesis of **2** from **11a** is depicted in Scheme 3. The introduction of a two-carbon unit to **11a** was efficiently achieved by epoxy-ring opening using trimethylsilylacetylide as a nucleophile, ⁹ providing alkyne (**17**). ¹⁰ Compound (**17**) was then converted into γ-lactone (**18**) by intramolecular Wacker-type oxidation.^{11,12} As shown in Scheme 3, this palladium(II)-catalyzed γ-lactone formation involves 1) *trans*-selective intramolecular hydroxypalladation to the acetylene group and 2) the

Reagents and conditions: a) $VO(acac)_{2}$, *t*-BuOOH, CH₂Cl₂, 62%; b) MOMCl, *i*-Pr₂NEt, DMAP, CH₂Cl₂, reflux, 34% for **11a**, 55% for **11b**; c) Dibal-H, CH₂Cl₂, 0 °C, 59% ; d) 2 M HCl, THF, 50 °C, quant.; e) 2,2-dimethoxypropane, PPTS, 84%; f) (S)-O-acetylmandelic acid, EDCI·HCl, DMAP, CH₂Cl₂, 37%; g) (R) - O -acetylmandelic acid, EDCI·HCl, DMAP, CH₂Cl₂, 35%.

Scheme 2. Preparation of epoxy alcohols (**11a** and **11b**) and determination of the stereochemistry for **11b**

addition of H_2O to the intermediary η^2 -olefin complex, followed by 3) *syn*-elimination of a PdClTMS. Finally, deprotection of the MOM group in **18**, followed by acetylation, provided 1893B (**2**). ¹³ The spectroscopic data $\text{(IR, }\,{}^1\text{H-}$ and $\,{}^{13}\text{C-}$ NMR) of synthetic 2 were identical to those reported for natural 1893B in all respects. ¹ The dextrorotatory property of the synthetic **2** established the absolute stereochemistry [for synthetic 2: $[\alpha]_D^{27} + 10.8^\circ$ (*c* 0.25, acetone), for natural 2: $[\alpha]_D^{20} + 10.8^\circ$ (*c* 0.02, acetone)]. On the other hand, the major epoxy alcohol (**11b**) was transformed into **2'** (the proposed structure for 1893B)¹ by the analogous reaction sequence used for **11a**, whose spectroscopic data (¹H- and 13 C- NMR) did not coincide with those of the natural 1893B.^{14, 15}

Reagents and conditions: a) TMS-acetylene, *n*-BuLi, BF₃·Et₂O, THF, −78 to −30 °C, 99%; b) PdCl₂(MeCN)₂, CuCl₂, 1% aq. DMF, 71%; c) 2 M HCl, THF, 50 °C, 98%; d) Ac₂O, DMAP, pyridine, 84%.

Scheme 3. Construction of the γ-lactone moiety and completion of the total synthesis

In conclusion, we have accomplished the total synthesis of (+)-1893B (**2**) for the first time. The total synthesis started from our previously reported ROM/CM/RCM product (**5**). The efficient formation of the γ-lactone moiety was achieved by an intramolecular Wacker-type oxidation approach. The present total synthesis verifies the stereochemistry of 1893B. It is obvious that 1893B is a rearrangement product of mycoepoxydiene, as reported previously.

ACKNOWLEDGEMENTS

This work was supported by a Grant-in-Aid for the 21st Century COE program "KEIO Life Conjugate Chemistry" from MEXT, Japan. We thank Professors Yongcheng Lin (Zhongshan University) for providing spectral copies of the natural product.

REFERENCES AND NOTES

- 1. G. Chen, Y. Lin, L. Wen, L. L. P. Vrijmoed, and E. B. G. Jones, *Tetrahedron*, 2003, **59**, 4907.
- 2. P. Cai, A. T. McPhail, E. Krainer, B. Katz, C. Pearce, C. Boros, B. Caseres, D. Smith, and D. R. Houck, *Tetrahedron Lett.*, 1999, **40**, 1479.
- 3. (a) K. Takao, G. Watanabe, H. Yasui, and K. Tadano, *Org. Lett*., 2002, **4**, 2941. (b) K. Takao, H. Yasui, S. Yamamoto, D. Sasaki, S. Kawasaki, G. Watanabe, and K. Tadano, *J. Org. Chem.*, 2004, **69**, 8789.
- 4. (a) D. B. Dess and J. C. Martin, *J. Am. Chem. Soc.*, 1991, **113**, 7277. (b) R. E. Ireland and L. Liu, *J. Org. Chem.*, 1993, **58**, 2899. (c) M. Frigerio, M. Santagostino, and S. Sputore, *J. Org. Chem.*, 1999, **64**, 4537.
- 5. All new compounds were fully characterized by spectroscopic means [1 H-NMR (270 MHz in CDCl₃), ¹³C-NMR (68 MHz in CDCl₃), IR] and gave satisfactory HRMS spectrum. Yields referred to homogeneous samples purified by chromatography on silica gel.
- 6. In a large-scale experiment, the diastereomer (**7b**) was isolated in some extent from the mixture by recrystallization with ethyl acetate.
- 7 (a) I. Chataigner, J. Lebreton, D. Durand, A. Guingant, and J. Villiéras, *Tetrahedron Lett.*, 1998, **39**, 1759. (b) For a recent review of the assignment of absolute configuration by NMR spectrum, see: J. M. Seco, E. Quiñoá, and R. Riguera, *Chem. Rev.*, 2004, **104**, 17.
- 8. B. E. Rossiter, T. R. Verhoeven, and K. B. Sharpless, *Tetrahedron Lett.*, 1979, **49**, 4733. According to the stereochemical outcome proposed by the Sharpless group, the *anti* epoxy alcohol was obtained preferentially.
- 9. S. Takano, T. Kamikubo, T. Sugihara, M. Suzuki, and K. Ogasawara, *Tetrahedron: Asymmetry*, 1993, **4**, 201.
- 10. We examined the ring-opening reactions of epoxy alcohols (**10**, **11a** or **11b**) by using nucleophiles such as acetic acid dianion, acetonitrile anion, or dimethyl malonate anion. None of these nucleophiles afforded the desired ring-opened products.
- 11. (a) P. Compain, J. Goré, and J.-M. Vatèle, *Synlett*, 1994, 943. (b) P. Compain, J. Goré, and J.-M. Vatèle, *Tetrahedron*, 1996, **52**, 10405.
- 12. Conversion of **17** into **18**: To a stirred solution of **17** (11.0 mg, 31.4 µmol) in DMF containing 1 vol% H₂O (1 mL) was added PdCl₂(MeCN)₂ in aqueous DMF solution (100 µL of 6.1 mg in1.5 mL DMF containing 1 vol% H₂O) and CuCl₂ in aqueous DMF solution (100 μ L of 10.6 mg in1.0 mL DMF containing 1 vol% H_2O . The mixture was stirred for 4 days at rt and concentrated in vacuo. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 2:1) to provide 6.5 mg (71%) of **18** as a colorless oil; TLC R_f 0.37 (EtOAc/hexane, 3:2); $[\alpha]_D^{27.5}$ +16.9° (*c* 0.325,

CHCl3); ¹ H NMR (270 MHz) δ 1.12 (d, 3H, *J* = 7.0 Hz), 2.08~2.27 (m, 2H), 2.54 (dd, 2H, *J* = 6.2, 10.2 Hz), 2.65~2.81 (m, 2H), 3.40 (s, 3H), 3.82 (dd, 1H, *J* = 4.4, 8.8 Hz), 4.23 (d, 1H, *J* = 4.4 Hz), 4.52 (t, 1H, *J* = 6.0 Hz), 4.68~4.78 (m, 1H), 4.75 (d, 2H, *J* = 1.8 Hz), 5.87~5.94 (m, 2H), 6.02~6.09, 6.23~6.29 (2m, each 1H); ¹³C NMR (68 MHz) δ 14.7, 23.7, 28.5, 50.8, 53.4, 56.3, 77.2, 79.0, 80.8, 85.9, 97.9, 124.8, 125.9, 137.3, 138.6, 170.7; IR (neat) 2920, 1775 cm⁻¹; HRMS calcd for $C_{16}H_{22}O_5$ (M+) *m/z* 294.1467, found 294.1478.

- 13. 1893B (**2**) was obtained as white crystals: mp 138.5-140.7 °C (recystallized from ethyl acetate/hexane); TLC R_f 0.48 (EtOAc/hexane, 4:1); IR 2920, 1775, 1730, 1460 cm⁻¹; ¹H-NMR (270 MHz, CDCl₃) δ 0.98 (d, 3H, *J*=7.0 Hz), 2.00-2.36 (m, 2H), 2.11 (s, 3H), 2.43-2.55 (m, 2H), 2.70-2.73 (m, 1H), 2.98 (ddd, 1H, *J*=6.5, 6.5, 10.3 Hz), 4.24 (d, 1H, *J*=4.4 Hz), 4.42 (t, 1H, *J*=5.9 Hz), 4.57 (ddd, 1H, *J*=2.5, 6.5, 7.6 Hz), 5.15 (dd, 1H, *J*=2.4, 10.4 Hz), 5.90-5.97 (m, 2H), 6.01-6.08 (m, 1H), 6.21-6.27 (m, 1H); ¹³C-NMR (68 MHz, CDCl₃) δ 14.4, 21.0, 23.9, 28.0, 51.5, 52.3, 72.6, 76.7, 80.1, 86.2, 125.0, 126.3, 136.9, 137.5, 170.5, 176.2; HRMS calcd for C₁₆H₂₀O₅ (M⁺) m/z 292.1311, found 292.1316.
- 14. Compound (2^{*'*}) was obtained as white solids: TLC, R_f 0.50 (EtOAc/hexane, 4:1) $[\alpha]_D^{25.2}$ +121[°] (*c* 0.05, acetone); IR (neat) 2920, 1775, 1750 cm-1 ; 1 H NMR (270 MHz) δ 1.04 (d, 3H, *J* = 6.6 Hz), 2.00-2.36 (m, 2H), 2.08 (s, 3H), 2.43-2.55 (m, 2H), 2.65-2.78 (m, 2H), 4.24 (d, 1H, *J*=4.4 Hz), 4.43-4.50 (m, 2H), 5.31 (dd, 1 H, *J* = 4.4, 9.5 Hz), 5.88-5.97 (m, 2H), 6.06-6.13 (m, 1H), 6.23-6.29 (m, 1H); ¹³ C NMR (68 MHz) δ 14.3, 20.9, 22.9, 29.7, 52.4, 52.5, 71.5, 77.2, 80.5, 85.6, 124.9, 126.4, 137.6, 137.8, 169.9, 176.0; HRMS calcd for C₁₆H₂₀O₅ (M⁺) m/z 292.1311, found 292.1305.
- 15 We have also synthesized two other diastereomers of 1893B starting from another allylic alcohol **(7a**) by the synthetic schemes similar to those used for **7b**. It was verified that the ¹ H-NMR spectra of these diastereomers did not match that of the natural 1893B.