
HETEROCYCLES, Vol. 67, No. 1, 2006, pp. 123 - 128. © The Japan Institute of Heterocyclic Chemistry  
Received, 25th July, 2005, Accepted, 5th September, 2005, Published online, 6th September, 2005. COM-05-S(T)42 

TOTAL SYNTHESIS OF (+)-1893B AIMED AT ESTABLISHING ITS 

STEREOCHEMISTRY‡ 

Hiroyuki Yasui, Kunihiro Hirai, Shun Yamamoto, Ken-ichi Takao, and 

Kin-ichi Tadano* 

Department of Applied Chemistry, Keio University, Hiyoshi, Kohoku-ku, 

Yokohama 223-8522, Japan 

tadano@applc.keio.ac.jp 

Abstract – The total synthesis of (+)-1893B (2) has been completed.  The 

one-pot ring-opening/cross/ring-closing metathesis of (1S,2S,3S,4R)-2- 

(t-butyldiphenylsilyloxy)methyl-3-methyl-7-oxabicyclo[2.2.1]hept-5-ene (4) 

provided (1R,6S,7S,8S)-7-hydroxymethyl-8-methyl-9-oxabicyclo[4.2.1]nona-2,4- 

diene (6) after deblocking.  The epoxy-ring opening of an advanced intermediate 

(1R,6S,7S,8S)-7-[(1S,2S)-1-methoxymethoxy-2,3-epoxypropyl]-8-methyl-9-oxabi

cyclo[4.2.1]nona-2,4-diene (11a) with trimethylsilylacetylide, followed by 

palladium(II)-catalyzed oxidation for construction of the γ-lactone moiety in 2.   

1893A (1) and 1893B (proposed to be 2’) (Figure 1), which exhibit cytotoxic and insecticidal activities, 

were isolated recently from a marine endophytic fungus in mangroves grown on the coast of South China 

Sea.1  The structure of 1 was determined by X-Ray crystallographic analysis, while the structure of 

1893B was tentatively assigned by 1H-NMR spectral analysis. As a structurally related natural product, 

(+)-mycoepoxydiene (3) was also isolated.2 These natural products (1-3) have a common oxygen-bridged 

cyclooctadiene core skeleton.  After the completion of the total syntheses of (−)-1 and (+)-3,3 we 

embarked on the total synthesis of 1893B, envisaging that 1893B possesses the same relative 

configuration as that of 3.   Herein, we disclose the total synthesis of natural (+)-1893B, thereby 

establishing its relative and absolute stereochemistry to be 2. 

In the total syntheses of (−)-1 and (+)-3,3 we demonstrated the usefulness of a ring-expansion strategy by  

 
‡ This paper is dedicated to Professor Barry M. Trost with respect and admiration on the occasion of his 
65th birthday. 
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Figure 1. Structures of 1893A, 1893B and (+)-mycoepoxydiene 
 
olefin metathesis for the construction of the core 9-oxabicyclo[4.2.1]nona-2,4-diene framework.  In fact, 

an enantioenriched (95% ee) 7-oxabicyclo[2.2.1]hept-2-ene derivative (4) underwent ring-opening/cross 

metathesis (ROM/CM) with 1,3-butadiene, followed by ring-closing metathesis (RCM) of the resulting 

triene mixture, providing a cyclooctadiene derivative (5) in one pot (Scheme 1).  Deblocking of the 

t-butyldiphenylsilyl (TBDPS) ether in 5 provided 6, which was eventually transformed into (−)-1 and 

(+)-3.  The total synthesis of 1983B was started with this intermediate (6).  Dess-Martin oxidation4 of 6 

and the subsequent vinyl Grignard addition to the resulting aldehyde provided an inseparable 

diasteromeric mixture of allylic alcohol (7a/b)5 in a ratio of ca. 1:1.6  An attempt to separate this mixture 

(7a/b) by a Sharpless asymmetric epoxidation procedure [(−)-DIPT, Ti(Oi-Pr)4, t-BuOOH] resulted in the 

recovery of the starting mixture. 

For complete separation of 7a/b, we then investigated the acylation with optically active carboxylic acid. 

Condensation of 7a/b with (S)-O-acetylmandelic acid and separation of the products on silica gel  

provided esters (8a and 8b).  In this acylation, a reaction with excess acid and a low temperature was 

required to prevent epimerization at the α-carbon of the ester.   Basic hydrolysis of 8a and 8b provided 

7a and 7b, respectively.   To establish the configuration of the introduced allylic carbon in 7b (and thus                 
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Reagents and conditions: a) Dess-Martin periodinane, CH2Cl2; b) CH2=CHMgBr, THF, 70% for 2 steps; 
c) (S)-O-acetylmandelic acid, EDCI·HCl, DMAP, CH2Cl2, 47% for 8a, 51% for 8b; d) LiOH, 50% aq. 
MeOH, quant. for 7a, 98% for 7b; e) (R)-O-acetylmandelic acid, EDCI·HCl, DMAP, CH2Cl2, 90%. 

Scheme 1. Preparation of allylic alcohols (7a/b) and determination of their stereochemistries 
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that in 7a), the (R)-acetylmandelic acid ester (9b) of 7b was also prepared.  The chemical shift deference 

in the 1H NMR spectra for 9b and 8b [Δδ, δ(9b)-δ(8b)], as shown in Scheme 1, verified the 

(R)-configuration.7  The stereochemically defined 7b was subjected to Sharpless VO(acac)2-madiated 

oxidation,8 providing an inseparable 1.6:1 diastereomeric mixture of epoxy alcohol (10) (Scheme 2).  

This diastereomeric mixture (10) was etherified as the MOM (methoxymethyl) ethers, providing 

syn-isomer (11a) (34%) and anti-isomer (11b) (55%) by chromatographic separation on silica gel.  To 

confirm the stereochemistry at C-2’ in 11b (and thus that of 11a), the major isomer (11b) was converted 

into isopropylidene acetal (14) by 1) a hydride attack on the epoxy ring in 11b, 2) acidic removal of the 

MOM group in the resulting epoxy-ring opening product (12), and then 3) cyclic acetal formation of the 

resulting diol (13).  During NOE difference experiments of 14, signal enhancements of H-2’ (4.2%) and 

H-7 (8.0%) were observed when H-1’ and H-3’ (Me), respectively, were irradiated.  No NOE was 

observed between H-1’ and H-3’(Me).  The coupling constant for J1’,2’was 5.1 Hz.  On the other hand, 

compound (12) was converted into (S)- and (R)-O-acetylmandelic acid esters (15 and 16).  The Δδ 

values [δ(16)−δ(15)] confirmed the R-configuration at C-2’ in 12.  The structures of the epoxy alcohols 

(11a and 11b) were established to be those depicted. 

The completion of the total synthesis of 2 from 11a is depicted in Scheme 3.  The introduction of a 

two-carbon unit to 11a was efficiently achieved by epoxy-ring opening using trimethylsilylacetylide as a 

nucleophile, 9 providing alkyne (17).10   Compound (17) was then converted into γ-lactone (18) by intra- 

molecular Wacker-type oxidation.11,12 As shown in Scheme 3, this palladium(II)-catalyzed γ-lactone 

formation involves 1) trans-selective intramolecular hydroxypalladation to the acetylene group and 2) the  
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Reagents and conditions: a) VO(acac)2, t-BuOOH, CH2Cl2, 62%; b) MOMCl, i-Pr2NEt, DMAP, CH2Cl2, 
reflux, 34% for 11a, 55% for 11b; c) Dibal-H, CH2Cl2, 0 ºC, 59%; d) 2 M HCl, THF, 50 ºC, quant.; e) 
2,2-dimethoxypropane, PPTS, 84%; f) (S)-O-acetylmandelic acid, EDCI·HCl, DMAP, CH2Cl2, 37%; g) 
(R)-O-acetylmandelic acid, EDCI·HCl, DMAP, CH2Cl2, 35%. 

Scheme 2. Preparation of epoxy alcohols (11a and 11b) and determination of the stereochemistry for 11b 
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addition of H2O to the intermediary η2-olefin complex, followed by 3) syn-elimination of a PdClTMS.  

Finally, deprotection of the MOM group in 18, followed by acetylation, provided 1893B (2).13 The 

spectroscopic data (IR, 1H- and 13C- NMR) of synthetic 2 were identical to those reported for natural 

1893B in all respects.1 The dextrorotatory property of the synthetic 2 established the absolute 

stereochemistry [for synthetic 2: [α]D
27 +10.8º (c 0.25, acetone), for natural 2: [α]D

20 +10.8º (c 0.02, 

acetone)].  On the other hand, the major epoxy alcohol (11b) was transformed into 2’ (the proposed 

structure for 1893B)1 by the analogous reaction sequence used for 11a, whose spectroscopic data (1H- and 
13C- NMR) did not coincide with those of the natural 1893B.14, 15 
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84%. 
        Scheme 3. Construction of the γ-lactone moiety and completion of the total synthesis 
 
In conclusion, we have accomplished the total synthesis of (+)-1893B (2) for the first time.  The total 

synthesis started from our previously reported ROM/CM/RCM product (5). The efficient formation of the 

γ-lactone moiety was achieved by an intramolecular Wacker-type oxidation approach.  The present total 

synthesis verifies the stereochemistry of 1893B.  It is obvious that 1893B is a rearrangement product of 

mycoepoxydiene, as reported previously. 
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