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Abstract – Sila-, germa- and stannacyclopentasilanes could be obtained by 

reaction of a 1,4-dianionic polysilane with the dimethyl dichlorides of silicon, 

germanium and tin. With potassium tert-butoxide the cyclopentasilanes could be 

transformed into dianions, which were converted to bicyclic compounds by 

reaction with ethylene glycol ditosylate. 

 

INTRODUCTION 

Heterocyclic chemistry by its very definition is concerned with cyclic compounds having as ring member 

atoms of at least two different elements. Implicitly the notion is used mainly for organic compounds. 

However, also organoelement chemistry shows a variety of cyclic compounds, where the concept of homo- 

and heterocyclic compounds is equally applicable. As organosilicon chemistry in general resembles 

organic chemistry to some extent cyclic polysilanes can be divided into homo- and heterocyclopolysilanes.1 

A common synthetic access to heterocyclic polysilanes is the reaction of linear α,ω-dihalopolysilanes with 

dinucleophiles.2 Naturally, this method only works for hetero-elements with nucleophilic properties. 

Sometimes an inverse approach would be useful to incorporate electropositive elements by reaction with 

α,ω-polysilyl dianions. As these compounds were easily available only from lithium cleavage of 

octaphenylcyclotetra- and decaphenylcyclopentasilanes3 the latter were used for early examples of inverse 

salt elimination procedure.4 

RESULTS AND DISCUSSION 

Recently, we have introduced a variety of α,ω-dipotassiopolysilanes,5 which have also been used to obtain 

heterocyclic silanes.6 Especially, 1,4-dipotassio-1,1,4,4-tetrakis(trimethylsilyl)tetramethyltetrasilane (1) 
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proved to be useful in this respect. Employing this compound, reactions with dimethylsilyl, -germyl, and 

-stannyl dichlorides gave rise to the formation of cyclopentasilanes (2,3,4) (Scheme 1).5,7 Compound (2) 

could also be obtained from the reaction of 1,3-dipotassio-1,1,3,3-tetrakis(trimethylsilyl)dimethyltrisilane 

(5) with 1,2-dichlorotetramethyldisilane. 
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Scheme 1: Synthesis of hetero-2,2,4,4-tetrakis(trimethylsilyl)hexamethylcyclopentasilanes. 

 
 

Crystal structure analyses of sila- and germacyclopentasilanes (2) and (3) revealed two isomorphic 

structures.8 The rings exhibit half-chair conformations with the bond of the two dimethylsilylene units 

crossing the plane of the other three ring atoms by some 18 deg (Figure 1). The Si-Si distances in both rings, 

ranging from 2.348 to 2.375 Å and a Si-Ge distance of 2.408 Å in 3 indicate not much ring strain.  

 

 
Figure 1: Molecular structures of the isostructural cyclopentasilanes (2) and (3) (with 30% probability 

thermal ellipsoids; all hydrogen atoms have been omitted for clarity). 

 
 
Reactions of the heterocyclopentasilanes with one or two equivalents of potassium tert-butoxide in the 

presence of crown ether therefore promoted the formation of the respective mono- or di-potassium 

compounds (Scheme 2) and no ring-opening was observed. 
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Scheme 2: Formation of hetero-2,2,4,4-tetrakis(trimethylsilyl)hexamethylcyclopentasilanylanions 

 

Reactions of the dianions with ethylene glycol ditosylate was attempted to obtain heterobicyclo[2.2.1]-

heptanes. While these proceeded smoothly for the cases of the sila- and germacyclopentasilanyldianions 

(6, 7)9 (Scheme 3) the reaction of the respective tin (4b) compound failed.  
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Scheme 3: 1,4-Bis(trimethylsilyl)-1,2,3,4-tetrasila-7-hetero-2,2,3,3,7,7-hexamethylbicyclo[2.2.1]heptanes 

 

Applications of the obtained hetero-bicyclosilanes as precursors for the synthesis of higher hetero-

polysilanes or for the generation of nano-wires are currently under investigation.  
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