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Abstract – An enantioselective route for the convergent synthesis of chiral, 

nonracemic 5-substituted 3-acyl-2(1H)-pyridinones is reported.  Claisen 

rearrangement provides direct access to the α-branched 2-[4-(tert- 

butyldimethylsilanoxy)cyclohex-2-enyl]-3-hydroxypropionaldehyde as a key 

intermediate.  The application of mild oxidation conditions facilitates the 

preparation of a series of 3,5-disubstituted 2(1H)-pyridinones.  

Our recent studies toward the synthesis of naturally occurring pyridinones, such as apiosporamide (1),1 

YM-215343 (2),2  fischerin (3),3  and oxysporidinone (4)4  have focused on the development of a 

convergent, enantiocontrolled strategy which provides rapid access to C-1' deoxy derivatives of these 

novel 2(1H)-pyridinone systems.  Significant antibacterial, antifungal and cytotoxic properties associated 

with the natural metabolites are difficult to assess owing to their relative instability. 
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The presence of the C-1' tertiary hydroxyl group in these structures is postulated to contribute to the 

observed labile behavior.  Facile synthesis of the corresponding deoxy compounds provides an 

opportunity for studies of biological activity as well as a platform for late-stage oxidation for introduction 

 
† Dedicated to Professor Barry M. Trost in celebration of his 65th birthday. 
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of the C-1' hydroxyl moiety.  We and others have previously reported studies of total syntheses of 5-aryl-

2-pyridone representatives of this family, including tenellin,5 ilicicolin H,6 sambutoxin,7 and leporin A,8

and pyridovericin.9  However, the stereochemical complexities of structures (1–4) display two independent

components, as exhibited by the cyclohexanediol and the trans-decalin unit which are joined by the

planar pyridone ring in 1.  A convergent synthesis approach is required to address these concerns.  Herein

we describe an enantioselective route featuring a useful Claisen rearrangement for preparation of chiral,

nonracemic 4-substituted 2-cyclohexen-1-ols and the highly efficient transformation to yield 5-substituted

2-pyridinones.

Preparation of the optically active cyclohexenyl component is summarized in Scheme 1.  Beginning with

2-bromocyclohex-2-en-1-one, the Corey CBS asymmetric reduction10 with 6 results in 91% yield of 7

with high enantioselectivity (91–95% ee).  Surprisingly, the reductive removal of the 2-bromo substituent

proved more difficult than anticipated.11  Reactions of 7 with excess lithium metal in a mixture of THF

and tert-butanol (5:1 by volume) proceeded very slowly, requiring more than 24 h at reflux for complete

consumption of starting material.  While a number of other techniques proved to be less advantageous,

this dissolving metal reduction consistently gave 56% yield of (R)-2-cyclohexen-1-ol (8) and some over-

reduction to cyclohexanol (approximately 10%).  

Scheme 1.
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Silylation and subsequent epoxidation of 9 with buffered meta-chloroperbenzoic acid gave a 78% yield of

a 4:1 mixture of epoxides which were readily separated by flash chromatography affording 10.  Base-

induced isomerization12 gave allylic alcohol (11), and facile conjugate addition with methyl propiolate,

catalyzed by tri-n-butylphosphine, yielded the (E)-α,β-unsaturated ester (87%) for subsequent DIBAL

reduction to provide allylic alcohol (12) (86%).  Claisen rearrangement of 12 proceeded in a resealable

Carius tube at 180 °C to give the β-hydroxy aldehyde (13) (56% yield) with high diastereoselectivity at C-2

(dr 13:1).  However, the thermal rearrangement of the triethylsilyl ether (14) provided a superior yield of 15

(93%; dr 8:1 at C-2) as well as small amounts of the β-elimination product (2.5%).  A rationale for the
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observed stereoselectivity of the concerted [3,3]-process is illustrated by analysis of the chair-like and

boat-like arrangements of A and B (Figure 1), respectively.  The conformation in A, leading to the 2(S)-

diastereomer (16), reveals a nonbonded steric interaction of the vinylic hydrogen HA with remaining axial

hydrogen of the cyclohexenyl ring.  This destabilizing interaction is avoided in B which yields 2(R)-15 as

the major product.

Figure 1.
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Convergent construction of the pyridone ring system is illustrated in Scheme 2.  Amino alcohol (17) is

readily produced in two steps from aldehyde (15) via reductive amination of the corresponding oximino

ether derived from 4-methoxybenzyloxylamine (70–75% yield for 2 steps).  Acylation using benzotriazol-

1-yloxytris(dimethylamino)phosphonium hexafluorophosphate (BOP reagent) for activation of β-

ketocarboxylic acids (18a, 18b, and 18c) gave the expected amides (19a, 19b, and 19c) with minimal

byproducts of O-acylation.13  Swern oxidation14 of the primary alcohol provides the expected aldehyde in

high yield, however, attempted purification by silica gel chromatography effected an undesired cyclization

to  yield  the  5,6-dihydropyridones  (20a  and  20b).   Alternatively,  the  use  of  Dess–Martin

Scheme 2.
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periodinane15 allows for isolation of crude aldehyde without the need for flash chromatography, and this

material may be oxidized with sodium chlorite under buffered conditions16 to yield carboxylic acids.

Treatment of the crude carboxylic acids with 1,1'-carbonyldiimidazole and sodium hydride gave the 5,6-
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dihydro-4-hydroxy-2-pyridones (21a, 21b and 21c) in 30–58% overall yields (over 3 steps).  Proton NMR

spectroscopy provides evidence that pyridones (20 and 21) are mixtures of C-5 diastereomers.

Furthermore, the examples of 5,6-dihydro-4-hydroxy-2-pyridones (21) have been shown to exist as

mixtures of equilibrating enol and keto tautomers.

Finally, the parent heterocycles were obtained by mild oxidation of 21abc with bromotrichloromethane,

as based on previous studies from these laboratories,17 providing good yields of 22abc.  Similarly,

treatment of 20ab under these oxidation conditions also gave the analogous 2(1H)-pyridones (60%).

Subsequent cleavage of the N–O bond is efficiently undertaken using SmI2 at –78 °C (95%).  However,

we have recently observed an unexpected N–O cleavage of 22c in our attempts to selectively provoke an

asymmetric C-1' Karasch oxidation.18  Using tert-butylperoxy-4-nitrobenzoate in the presence of the

Scheme 3.
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copper bis(oxazoline) complex derived from copper(I) triflate,19 pyridone (23) was immediately formed

as the major product without evidence of the expected allylic oxidation.20  Although additional efforts are

necessary to generalize and optimize conditions for this transformation, this unusual N–O cleavage under

oxidizing conditions has led to the isolation of desired 2(1H)-pyridone (24) for further studies.  
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In summary, we have established a convergent route for the enantioselective preparation of chiral,

nonracemic 5-substituted 3-acyl-2(1H)-pyridinones.  A novel Claisen rearrangement selectively affords a

chiral 3-hydroxypropionaldehyde derivative as a key building block for pyridone synthesis.  An

unanticipated oxidative N–O bond cleavage reaction has been described.
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