HETEROCYCLES, Vol. 68, No. 2, 2006, pp. 381 - 386. © The Japan Institute of Heterocyclic Chemistry Received, 28th November, 2005, Accepted, 29th December, 2005, Published online, 13th January, 2006. COM-05-10637 ACYLATED CYANIDIN 3,7,3'-TRIGLUCOSIDES WITH *p*-HYDROXYBENZOIC ACID FROM THE FLOWERS OF DENDROBIUM

Fumi Tatsuzawa, Norio Saito,* Tomohisa Yukawa,** Koichi Shinoda,[#] Atsushi Shigihara,* and Toshio Honda*

Department of Agro-Environmental Science, Hokkaido Junior College, Takushoku University, Fukagawa, Hokkaido 074-8585, Japan; * Faculty of Pharmaceutical Sciences, Hoshi University, Ebara 2-4-41, Shinagawa, Tokyo 142-8501, Japan; ** Tsukuba Botanical Garden, National Science Museum, Tsukuba, Ibaraki 305-0005 Japan; [#] National Agricultural Research Center for Hokkaido Region, Sapporo, Hokkaido, 062-8555.

<u>Abstract</u> – Two new acylated anthocyanins were isolated from the purple flowers of *Dendrobium* × *superbiens*, along with four known pigments. These pigments were all based on cyanidin 3,7,3'-triglucoside, and acylated variously with malonic, sinapic, and *p*-hydroxybenzoic acids. One of new anthocyanins was fully determined to be cyanidin $3-O-[6-O-(malony1)-\beta-D-glucopyranoside] 7-O-[6-O-(p-hydroxybenzoy1)-\beta-D-glucopyranoside]-3'-O-[6-O-(4-(\beta-D$ glucopyranosy1)-*p*-hydroxybenzoy1)-β-D-glucopyranoside] by chemical andspectral methods. Another new pigment was provisionally determined to becyanidin 3-malony1glucoside-7-glucosy1-*p*-hydroxybenzoy1glucoside-3'-*p*hydroxybenzoy1glucoside.

In our continuing work on flower color variation due to acylated anthocyanins in orchids, we have already reported the occurrence of acylated cyanidin, peonidin, and delphinidin glycosides in the flowers of *Dendrobium*,¹⁻³ × *Laeliocattleya*, *Cattleya*, *Laelia*,^{4,5} *Bletilla*,⁶ *Cymbidium*,⁷ *Phalaenopsis*,⁸ *Sophronitis*,⁹ and *Vanda*.¹⁰ In this paper, we wish to report the structure determination of two new acylated cyanidin 3,7,3'-triglucosides isolated from the purple flowers of *Dendrobium* × *superbiens*. Dry flowers (*ca.* 100 g) of *Dendrobium* × *superbiens* and hybrids mixture ¹¹ were immersed in 5% HOAc for 24 h at room temperature and extracted. By the analysis of HPLC, ¹² more than 30 anthocyanin peaks were observed in the extract from the flowers of *D.* × *superbiens* (Figure 1). Anthocyanins of four peaks (C-F) were

identified to be cyanidin 3-malonylglucoside-7,3'-di(glucosyl-*p*-hydroxybenzoylglucoside) for D,¹³ cyanidin 3-malonylglucoside-7,3'-disinapoylglucoside for F,¹⁴ and their demalonyl derivatives for C¹⁵ and E¹⁶ described previously³ (Figure 1). In this study, we investigated the isolation and structure determination of two major remaining peaks **A** and **B** from this plant as follows: The concentrated extract

was purified by DIAION HP-20 (Mitsubishi Chemical's Ion Exchange Resins) column chromatography with 5% HOAc and 5% HOAc-MeOH, and then by paper chromatography with BAW (*n*-BuOH/HOAc/H₂O, 4:1:2, v/v/v) and 5% HOAc according to the process described previously.¹⁻³ The fractions containing two anthocyanins were further purified by preparative HPLC,¹² and precipitated with Et₂O to afford pure pigments; pigment **A** (*ca*. 5 mg)¹⁷ and pigment **B** (*ca*. 2 mg).¹⁸

By acid hydrolysis, pigments **A** and **B** gave cyanidin, glucose, *p*-hydroxybenzoic acid and malonic acid. The alkaline hydrolysis of pigments **A** and **B** yielded cyanidin 3,7,3'-triglucoside,¹⁹ 4-glucosyloxybenzoic acid,²⁰ *p*-hydroxybenzoic acid and malonic acid.

The FAB MS spectra of pigments **A** and **B** gave the same molecular ion $[M]^+$ at 1261 m/z, in agreement with their mass calculated for C₅₆H₆₁O₃₃.

Pigment A: The elemental components of pigment A were confirmed by High Resolution-FABMS (calcd for C₅₆H₆₁O₃₃: 1261.3095. Found: 1261.3086). The result indicated that this pigment is composed of cyanidin with one molecule of malonic acid, two molecules of *p*-hydroxybenzoic acid and four molecules of glucose. The detailed structure of pigment A was elucidated by its ¹H NMR spectral measurement including ¹H-¹H COSY, NOEDIF and NOESY spectra in CF₃COOD-DMSO-*d*₆ (1:9), and the chemical shifts were assigned as shown in Table 1. The proton signals of cyanidin and two p-hydroxybenzoic acids were assigned by 2D COSY and NOEDIF spectra. The proton signals of the sugar moieties were observed in the region of δ 5.74 – 3.05 ppm. The chemical shifts of four anomeric protons were observed at δ 5.74 (d, J=7.7 Hz, Glc A), 5.41 (d, J=7.6 Hz, Glc B), 4.19 (d, J=7.6 Hz, Glc C), and 4.21 (d, J=7.6 Hz, Glc D), therefore, all glucose units must be β -glucopyranose form. Six methylene protons –CH₂- in glucose moieties which were acylated with two p-hydroxybenzoic acids (I and II) and malonic acid, were shifted to lower magnetic field (δ 3.98 – 4.90). These protons were assigned to the Glc A (δ 4.21 and 4.60, H-6a and 6b), Glc B (δ 4.21 and 4.90, H-6a and 6b), and Glc C (δ 3.98 and 4.54, H-6a and 6b) by the NOEDIF experiment and also by the analysis of its 2D COSY spectrum.

Cyanidin			Gluc	Glucose A			Glucose C		
4	8.83	S	1	5.74	d (7.7)	1	4.19	d (7.6)	
6	6.70	br s	2	3.78	m	2	3.26	m	
8	7.71	br s	3	3.46	m	3	3.05	t (8.9)	
2'	8.15	d (2.2)	4	3.33	m	4	3.31	m	
5'	7.18	d (9.0)	5	3.87	m	5	3.36	m	
6'	8.93	dd (2.2, 9.0)	6a	4.21	m	6a	3.98	m	
			6b	4.60	d (11.6)	6b	4.54	d (9.8)	
<i>p</i> -Hydroxyb	enzoic	acid I							
			Glucose B			Glucose D			
2 and 6	7.45	d (8.9)							
3 and 5	6.58	d (8.9)	1	5.41	d (7.6)	1	4.21	d (7.6)	
			2	3.49	m	2	3.29	m	
<i>p</i> -Hydroxybenzoic acid II			3	3.44	m	3	7		
			4	3.40	m	4			
2 and 6	7.90	d (8.8)	5	4.01	m	5	3.20	3.20 - 3.90	
3 and 5	6.81	d (8.8)	6a	4.21	m	6a			
			6b	4.90	d (10.4)	6b			
Malonic acio	ł								

¹H NMR spectral data of pigment A of *Dendrobium* × superbiens.^{*} Table 1

3.38 - 3.43 CH₂-

¹H NMR (500 MHz) (CF₃CO₂D-DMSO- d_6 , 1:9), at 25°C, an internal standard of TMS; Coupling constants (J in Hz) in parentheses.

In order to determine the attachments and/or positions of the glucose and acyl units in pigment A, NOEDIF spectra were measured. Observed NOEDIF between H-1 of Glc A and H-4 of cyanidin indicates

that Glc A is attached to OH-3 of cyanidin through a glucosidic bond. Glc C was determined to be glycosylated at OH-3' of cyanidin, because of the presence of NOEs between H-2' of cyanidin and H-1 of Glc C. Similarly, Glc B was deduced to be attached to OH-7 of cyanidin through a glucosidic bond due to the presence of NOEs between H-6 and -8 of cyanidin and H-1 of Glc B. Irradiation at H-1 of Glc B gave a NOEDIF spectrum in which rather weak NOEs at protons of H-2, -3, -5 and -6 of p-hydroxybenzoic acid I were observed. Thus, p-hydroxybenzoic acid I is attached to OH-6 of Glc B. As both irradiations at H-6b of Glc C and H-1 of Glc D exhibited NOEs at H-2, -3, -5 and -6 of p-hydroxybenzoic acid II, Glc C was confirmed to be acylated with p-hydroxybenzoic acid II at OH-6 of Glc C and also p-hydroxybenzoic acid II was glucosylated with Glc D at OH-4 of p-hydroxybenzoic acid II. On H₂O₂ degradation of pigment A, malonylglucose was determined in its product,¹ supporting that Glc A was acylated with of structure pigment A determined malonic acid. Thus. the was to be cyanidin 3-O-[6-O-(malonyl)-β-D-glucopyranoside]-7-O-[6-O-(p-hydroxybenzoyl)-β-D-glucopyranoside]-3'-O-[6-O-(4-(β -D-glucopyranosyl)-*p*-hydroxybenzoyl)- β -D-glucopyranoside], which is a new anthocyanin.^{21,22}

Figure 2. An acylated anthocyanin (pigment A) from the flowers of *Dendrobium*. Observed NOE's are indicated by arrows.

Pigment **B**: FAB-MS spectra of pigment **B** gave its $[M]^+$ as m/z 1261. This value is in good agreement with that of pigment **A**, which is composed of cyanidin with four molecules of glucose, two molecules of *p*-hydroxybenzoic acids and one molecule of malonic acid. On alkaline hydrolysis, this anthocyanin gave cyanidin 3,7,3'-triglucoside and 4-glucosyloxybenzoic acid, *p*-hydroxybenzoic acid and malonic acid as same as the result of pigment **A**. Based on the above findings, pigment **B** is considered to have similar triacyl cyanidin 3,7,3'-triglucoside, and the structure of pigment **B** is assigned by its spectral properties to be cyanidin 3,7,3'-triglucoside, in which 3'-glucosidic residue is acylated with *p*-hydroxybenzoic acid,

7-glucosidic residue is acylated with 4-glucosyloxybenzoic acid and also 3-glucosidic residue is acylated with malonic acid. This pigment is also a new anthocyanin in plants.

ACKNOWLEDGEMENTS

The authors thank the exhibitors of Japan Grand Prix RAN International Orchid Festival 2004 for the donation of *Dendrobium* hybrids, Mr. Kazuhiro Suzuki for skillful cultivation of the material, and also Miss Fumino Hayakawa and Miss Yukiko Toya (Chiba University) for their help in collecting plants.

REFERENCES AND NOTES

- 1. N. Saito, K. Toki, K. Uesato, A. Shigihara, and T. Honda, *Phytochemistry*, 1994, 37, 245.
- C. A. Williams, J. Greenham, J. B. Harborne, J. –M. Kong, L. –S. Chia, N. –K. Goh, N. Saito, K. Toki, and F. Tatsuzawa, *Biochemical Systematics and Ecology*, 2002, 30, 667.
- F. Tatsuzawa, T. Yukawa, K. Shinoda, and N. Saito, *Biochemical Systematics and Ecology*, 2005, 33, 625.
- 4. F. Tatsuzawa, N. Saito, M. Yokoi, A. Shigihara, and T. Honda, *Phytochemistry*, 1994, **37**, 1179.
- 5. F. Tatsuzawa, N. Saito, M. Yokoi, A. Shigihara, and T. Honda, *Phytochemistry*, 1996, **41**, 635.
- 6. N. Saito, M. Ku, F. Tatsuzawa, T. S. Lu, M. Yokoi, A. Shigihara, and T. Honda, *Phytochemistry*, 1995 **40**, 1523.
- 7. F. Tatsuzawa, N. Saito, and M. Yokoi, *Lindleyana*, 1996, 11, 214.
- 8. F. Tatsuzawa, N. Saito, H. Seki, R. Hara, M. Yokoi, and T. Honda, *Phytochemistry*, 1997, 45, 173.
- 9. F. Tatsuzawa, N. Saito, M. Yokoi, A. Shigihara, and T. Honda, *Phytochemistry*, 1998, 49, 869.
- F. Tatsuzawa, N. Saito, H. Seki, M. Yokoi, T. Yukawa, K. Shinoda, and T. Honda, *Biochemical Systematics and Ecology*, 2004, 32, 651.
- 11. Fresh flowers of *Dendrobium* hybrids (*ca.* 1000 g), whose anthocyanin components are the same to those of *D.* × *superbiens*, were gifted by the exhibitors of Japan Grand Prix RAN International Orchid Festival 2004 and 2005. *D.* × *superbiens* was grown in the greenhouses of Tsukuba Botanical Garden (TBG), National Science Museum, Tokyo. Voucher specimen of *D.* × *superbiens* was deposited at TBG.
- 12. Analytical HPLC was run on a Waters C18 (4.6 x 250 mm) column at 40°C with flow rate of 1 mL·min⁻¹ and monitored at 530 nm for anthocyanins and 230 nm for 4-glucosyloxybenzoic acid and *p*-hydroxybenzoic acid. Solvent system used was linear gradient elution for 40 min from 20 to 85 % solvent B (1.5% H₃PO₄, 20% HOAc, 25% MeCN in H₂O) in solvent A (1.5% H₃PO₄ in H₂O). Preparative HPLC was run on a Waters C18 (19 x 150 mm) column at 40°C with flow rate of 4 mL·min⁻¹ and monitored at 530 nm for anthocyanins. Solvent system used was linear gradient elution for 40 min from 20 to 64 mL·min⁻¹ and monitored at 530 nm for anthocyanins. Solvent system used was linear gradient elution for 40 min from 20 to 65 min⁻¹ and monitored at 530 nm for anthocyanins. Solvent system used was linear gradient elution for 40 min from 20 to 65 min⁻¹ and monitored at 530 nm for anthocyanins. Solvent system used was linear gradient elution for 50 min⁻¹ and monitored at 530 nm for anthocyaning.

15 min from 60 to 80 % solvent B in solvent A.

- 13. Pigment **D**, cyanidin 3-malonylglucoside-7,3'-di(glucosyl-*p*-hydroxybenzoylglucoside); UV-VIS (in 0.1% HCl-MeOH): λmax 533, 248 nm, E₄₄₀/E_{max} (%) = 23, AlCl₃ shift 0; TLC: R_f-values BAW (*n*-BuOH/HOAc/H₂O, 4:1:2, v/v/v) 0.04, BuHCl (*n*-BuOH/2N HCl, 1:1, v/v) 0.04, 1% HCl 0.21, AHW (HOAc/HCl/H₂O, 15:3:82, v/v/v) 0.47; HPLC: R_t(min) 16.8.
- 14. Pigment **F**, cyanidin 3-malonylglucoside-7,3'-disinapoylglucoside; UV-VIS (in 0.1% HCl-MeOH): $\lambda \max 534, 330, 295 \text{ nm}, E_{440}/E_{\max}$ (%) = 29, E_{acyl}/E_{max} (%) = 154, AlCl₃ shift 0; TLC: R_{f} -values BAW 0.28, BuHCl 0.14, 1% HCl 0.15, AHW 0.53; HPLC: $R_{t}(\min)$ 30.3.
- 15. Pigment C, cyanidin 3-glucoside-7,3'-di(glucosyl-*p*-hydroxybenzoylglucoside); UV-VIS (in 0.1% HCl-MeOH): λ max 533, 294 nm, E_{440}/E_{max} (%) = 24, AlCl₃ shift 0; TLC: $R_{\rm f}$ -values BAW 0.05, BuHCl 0.04, 1% HCl 0.25, AHW 0.49; HPLC: $R_{\rm t}$ (min) 15.8.
- 16. Pigment E, cyanidin 3-glucoside-7,3'-disinapoylglucoside; UV-VIS (in 0.1% HCl-MeOH): λ max 534, 330, 295 nm, E_{440}/E_{max} (%) = 28, E_{acyl}/E_{max} (%) = 121, AlCl₃ shift 0; TLC: R_{f} -values BAW 0.34, BuHCl 0.15, 1% HCl 0.16, AHW 0.46; HPLC: R_{t} (min) 28.7.
- 17. Pigment A: UV-VIS (in 0.1% HCl-MeOH): $\lambda max 530$, 248 nm, E_{440}/E_{max} (%) = 26, AlCl₃ shift 0; TLC: $R_{\rm f}$ -values BAW 0.03, BuHCl 0.03, 1% HCl 0.14, AHW 0.30; HPLC: $R_{\rm t}(\min)$ 24.4.
- 18. Pigment **B**: UV-VIS (in 0.1% HCl-MeOH): $\lambda \max 531$, 248 nm, E_{440}/E_{\max} (%) = 29, AlCl₃ shift 0; TLC: $R_{\rm f}$ -values BAW 0.04, BuHCl 0.06, 1% HCl 0.34, AHW 0.49; HPLC: $R_{\rm t}(\min)$ 25.3.
- 19. Cyanidin 3,7,3'-triglucoside (in 0.1% HCl-MeOH); UV-VIS: λmax 513, 280 nm, E₄₄₀/E_{max} (%) = 36, AlCl₃ shift 0; TLC: R_f-values BAW 0.09, BuHCl 0.04, 1% HCl 0.30, AHW 0.62; HPLC: R_t(min) 6.2.
- 20. 4-glucosyloxybenzoic acid; HPLC: λ max 232, 248 nm, R_t (min): 4.6 min.
- 21. J. B. Harborne and H. Baxter, *The Handbook of Natural Flavonoids, Volume 2*, 1999, John Wiley & Sons, Chichester, (New York, Weinheim, Brisben, Singapore and Toronto).
- 22. T. Honda and N. Saito, *Heterocycles*, 2002, 56, 633.