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Abstract – An unprecedented formation of a new type of 1,5-benzothiazepines 

with exocyclic double bond at position 4 has been achieved by the reaction of 

3-aryl-1-(3-coumarinyl)propen-1-ones with 2-aminothiophenol.

Owing to their bioactivities, natural, semisynthetic and synthetic coumarins2,3 are important substances in 

the drug research. As a result, numerous coumarin type substances have been synthesized, some of which 

can be utilized as convenient starting materials for the synthesis of heterocyclic ring systems. 

3-Cinnamoyl coumarins4 prepared by the reaction of 3-acetylcoumarins with aromatic aldehydes proved 

to be especially versatile intermediates for this purpose. 3-Cinnamoyl coumarins have been used for the 

synthesis of pyridine,3b pyrazoline4a and isoxazoline4g derivatives. 1,5-Benzodiazepines and 

1,5-benzothiazepines possessing a coumarin moiety have also been synthesized by the reaction of various 

coumarinylchalcones with 1,2-phenylenediamine and 2-aminothiophenol.5 

Synthesis of 2,4-disubstituted 2,3-dihydro-1,5-benzothiazepines by the reaction of α,β-unsaturated 

ketones with 2-aminothiophenol (2) under various reaction conditions is well established in the chemical 

literature.6 As a continuation of our studies in this field, synthesis of newer representatives of such 
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1,5-benzothiazepines has been attempted by the reaction  of 3-aryl-1-(3-coumarinyl)propen-1-ones 

(1a-f) with 2-aminothiophenol (2). Compounds (1a-f) and 2-aminothiophenol (2) were allowed to react in 
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hot toluene in the presence of acetic acid (Scheme 1).7 For a complete conversion of the starting 

coumarinylchalcones (1a-f) the use of two or three equivalents of 2-aminothiophenol (2) was required. 

On the basis of previous experiences concerning the reaction of various α,β-unsaturated ketones with 

2-aminothiophenol (2),6 the formation of 2-aryl-4-(3-coumarinyl)-2,3-dihydro-1,5-benzothiazepines was 

expected. However, electron impact (70 eV) mass spectra of all isolated products (8a-f) revealed 

molecular ions higher by two Daltons than those of the expected 

2-aryl-4-(3-coumarinyl)-2,3-dihydro-1,5- benzothiazepines. The structures of compounds (8a-f) were 

elucidated by NMR spectroscopy using 1H, 13C, DEPT-135, 1H-13C HSQC, 1H-13C HMBC, 1H-1H COSY 

and 1H-1H NOESY techniques, using widely accepted strategies.8 The route of the signal and structure 

assignments of 8d is discussed as a representative example.9 Utilizing the 1H and 1H-1H COSY spectra 

we identified one 1,2-disubstituted aromatic ring with S- and N-, one another 1,2-disubstituted aromatic 

ring with O- and C-substituents. Furthermore, one 1,3-disubstituted aromatic ring with C- and CH3O- 

groups. Moreover, one isolated -CH2- and the spin system of a -CH2CH- moiety have also been detected . 

The long-range JC,H HMBC correlations of the NH, SCH and the isolated -CH2- hydrogen atoms provided 

an unambiguous assignment of the aromatic rings of the benzothiazepine and coumarin moieties. The 

NH/C-3’ correlation proved the C-4 position of the coumarinyl moiety, whereas the NH/C-3 cross-peak 

revealed the presence of the thiazepine ring. 

The high chemical shif δNH = 11.61 ppm indicates a strong hydrogen bonding, whereas the steric 

proximity of the H2C-3 and H2C-4’ hydrogen atoms observed in the NOESY experiment, unambiguously 

proved the Z-configuration of the exo double bond.   
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Figure 1. Characteristic HMBC correlations of the NH, H-2, H2C-4’, H-9 and CH3O hydrogen atoms in 

compound (8d). The arrows indicate the detected 2JCH and 3JCH couplings. 
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Over the major products (8a-f), bis(2-aminophenyl) disulfide (9) has also been isolated as by-product 

from the crude reaction mixtures. Presence of this by-product may help the evaluation of the mechanism 

of the formation of compounds (8a-f). As far as the reaction mechanism is concerned, we assume that 

compound (3) is formed as first intermedaite which may then be converted into substances (4 and 5) as 

indicated in Scheme 1. Compound (4) reacts with another 2-aminothiophenol (2) molecule to afford 

intermediate (6) which gives compound (7) on a ring closure. This intermediate provides the isolated 

benzothiazepines (8a-f) together with the by-product (9) (Scheme 1). The 2-aminothiophenol (2) has been 

found to reduce disulfide bonds in proteins under weakly acidic conditions.10 Our experiments are in 

progress to corroborate this plausible reaction mechanism.  

Although the yields of the isolated major products (8a-f) are only medium, an unprecedented formation of 

new type of 1,5-benzothiazepines with exocyclic double bond at position 4 has been achieved in our 

present study. It is worth mentioning the high stereoselectivity of the ring closure reaction providing the 

(Z)-isomers of (8a-f) as stereohomogeneous products. 
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