HETEROCYCLES, Vol. 68, No. 8, 2006, pp. 1699 - 1703. © The Japan Institute of Heterocyclic Chemistry Received, 27th April, 2006, Accepted, 20th June, 2006, Published online, 23rd June, 2006. COM-06-10775

AN ACYLATED CYANIDIN 3-RUTINOSIDE-7-GLUCOSIDE WITH *p*-HYDROXYBENZOIC ACID FROM THE RED-PURPLE FLOWERS OF *CAMPANULA MEDIUM*

Kenjiro Toki,[†] Norio Saito,[‡] Megumi Ito,[†] Atsushi Shigihara,[‡] and Toshio Honda[‡]

[†]Laboratory of Floriculture, Minami-Kyushu University, Takanabe, Miyazaki, Japan; [‡]Faculty of Pharmaceutical Sciences, Hoshi University, Shinagawa, Tokyo, Japan

Abstract – A new acylated anthocyanin was isolated from the red-purple flowers of Campanula medium as a major pigment together with a known anthocyanin. The new pigment was determined to be cvanidin 3-O-[6-O-(α-L-rhamnopyranosyl)-β-D-glucopyranosyl]-7-O-{4-[6-O-(4-(6-O- $(p-hydroxybenzoyl)-\beta-D-glucopyranosyl)-oxybenzoyl)-\beta-D-glucopyranosyloxy$ benzoyl]- β -D-glucopyranoside} based on spectroscopic analyses. The known pigment was also identified to be rubrocampanin, pelargonidin 3-rutinoside-7-(p-hydroxybenzoylglucopyranosyl-p-hydroxybenzoylglucopyranosyl-p-hydroxybenzoylglucopyranoside).

In 1990, we reported the isolation and structure determination of the flower anthocyanins of *Campanula medium*, and described that its purple and pink cultivars contained campanin and rubrocampanin as their main anthocyanins, respectively.¹ Both pigments were determined to be 3-rutinoside-7-(p-hydroxybenzoylglucopyranosyl-p-hydroxybenzoylglucopyranosyl-p-hydroxybenzoylglucopyranosides) of delphinidin (campanin) and pelargonidin (rubrocampanin), respectively.¹

Two analogous of campanin, such as monodeacylcampanin lacking of a molecule of *p*-hydroxybenzoic acid, and violdelphin lacking of one molecule of glucosyl-*p*-hydroxybenzoic acid, were also found in the flowers of *C. isophyla*, *C.carpatica* and *C. proskarshyana* by Goto and his coworkers in 1993.² As a part of our continuing studies on flower color variation,³ we report here the isolation and structure elucidation of a new anthocyanin along with a known anthocyanin, rubrocampanin, from the red-purple flowers of *C. medium* cv. 'May Purple Margin'.⁴ For the sake of convenience, we named this new compound as

purprocampanin (PC).

Air-dried petals (50g) of *C. medium* were extracted with 50% AcOH. Two major and at least 8 minor peaks of anthocyanins were observed by HPLC analysis of the crude extract. Among these anthocyanins, two main compounds (1) (*ca*.50mg) and (2) (*ca* 70mg) were obtained as scarlet and dark red powders, respectively, by the process described previously.¹

On acid hydrolysis,⁵ both pigments gave glucose, rhamnose, and *p*-hydroxybenzoic acid as their sugar and hydroxyacid moieties. As their aglycones, pelargonidin and cyanidin were observed in pigments (1) and (2), respectively. On alkaline hydrolysis,⁵ pigments (1) and (2) gave *p*-hydroxybenzoic acid, 4-glucosylhydroxybenzoic acid,⁶ and a deacylanthocyanin. The deacylanthocyanin of pigment (1) was identified as pelargonidin 3-rutinoside-7-glucoside by direct comparison of TLC and HPLC⁷ with authentic specimen,⁸ which was derived from rubrocampanin on the alkaline hydrolysis.¹ By HPLC analysis, pigment (1) was identified to be rubrocampanin, and its structure was further confirmed based on the analysis of FAB mass and NMR spectra.¹⁰ On the other hand, the deacylanthocyanin⁹ of pigment (2) were not identical with both 3-rutinoside-7-glucosides of pelargonidin and delphinidin, obviously. Based on the examination of chemical and spectral properties of pigment (2),¹¹ it was presumed to be a new acylated cyanidin glycoside, an analogue of campanin and rubrocampanin.

The HR FAB mass spectrum of pigment (2) gave its molecular ion $[M]^+$ at m/z 1441.3906, in agreement with the mass calculated for C₆₆H₇₃O₃₆, which was composed of cyanidin with four molecules of glucose, three molecules of *p*-hydroxybenzoic acid and one molecule of rhamnose.

Figure 1. Purprocampanin from *Campanula medium*. Observed NOE's are indicated by arrows.

In order to determine the structure of pigment (2), its ¹H and ¹³C NMR spectroscopic measurements including 2D COSY, negative difference NOE (NOEDIF), HMQC, HMBC and NOESY spectra were carried out in CF₃CO₂D-DMSO- d_6 (1:9). The chemical shifts of its protons were assigned as shown in Table 1. Regarding the sugar moieties of pigment (2), their signals were observed in the region of δ 5.39-1.20, and five anomeric proton signals were assigned to be δ 5.37 (d, *J*=7.7 Hz, Glc-A), 5.39 (d, *J*=7.7 Hz, Glc-B), 5.13 (d, *J*=6.7 Hz, Glc-C), 5.00 (d, *J*=7.7 Hz, Glc-D), and 4.70 (s, Rhamnose). The coupling constants of the glucose moieties were in the region of *J*=6.7-7.7 Hz, suggesting that all glucose units must be β -glucopyranose form (Figure1). Furthermore, six characteristic proton signals shifted to the lower magnetic field at δ 4.73 and 4.38 (Glc-B, H-6a and –6b), δ 4.66 and 4.60 (Glc-C, H-6a and –6b), and δ 4.43 and 4.15 (Glc-D, H-6a and –6b), were observed and assigned to the methylene protons of glucose moieties by the analysis of 2D COSY and NOESY spectra, indicating that Glc-B, Glc-C, and Glc-D were acylated with *p*-hydroxybenzoic acids (I, II, and III) at OH-6 groups of three glucose moieties.

Courling constants (I	:	-									
Coupling constants (J in Hz) in parentheses.											
Cyanidin		se A	Glucose D								
8.68 s	1	5.37 d (7.7) 2.70 m	1	5.00 d (7.7)							
7.45 brs	2))	2 3	3.39 m							
8.19 d (2.2) 7 10 d (8 9)	4 5	} 3.20-3.50	4 5	3.20-3.60 3.80 m							
8.42 dd (2.2, 8.9)	6a 6b	4.01 d (10.1) 3 54 m	6a 6b	4.43 d (10.7) 4.15 dd (7.5, 10.7)							
p-Hydroxybenzoic acid (I)		se B	Rhamnose								
7.87 d (8.2) 7.16 d (8.2)	1 2	5.39 d (7.7) 3.59 m	1 2	4.70 s							
p-Hydroxybenzoic acid (II)		3.20-3.75	3 ⊿	3.20-3.70							
7.61d (8.6) 6.84m	5 6a 6b	4.10 m 4.73 d (12.5) 4.38 dd (7.3, 12.5)	5 Me	3.48 s 1.20 s							
p-Hydroxybenzoic acid (III)		ose C									
7.51 d (8.6) 6.63 d (8.6)	1 2 3 4 5 6a	5.13 d (6.7) 3.43 m 3.36 m 3.89 t (7.8) 4.27 m 4.66 m									
	Coupling constants (J in 8.68 s 6.80 brs 7.45 brs 8.19 d (2.2) 7.10 d (8.9) 8.42 dd (2.2, 8.9) oxybenzoic acid (I) 7.87 d (8.2) 7.16 d (8.2) 7.16 d (8.2) oxybenzoic acid (II) 7.61d (8.6) 6.84m oxybenzoic acid (III) 7.51 d (8.6) 6.63 d (8.6)	Coupling constants $(J \text{ in Hz})$ ininGluco8.68 s16.80 brs27.45 brs38.19 d (2.2)47.10 d (8.9)58.42 dd (2.2, 8.9)6a6b6boxybenzoic acid (I)Gluco7.87 d (8.2)17.16 d (8.2)2oxybenzoic acid (II)47.61d (8.6)56.84m6a6b0oxybenzoic acid (III)47.61d (8.6)56.84m6a6b3456a256a	Coupling constants (J in Hz) in parentheses. Glucose A 8.68 s 1 $5.37 d (7.7)$ 6.80 brs 2 $3.70 m$ 7.45 brs 3 $3.20-3.50$ 7.10 d (8.9) 5 $3.20-3.50$ 7.10 d (8.9) 5 $3.20-3.50$ 8.42 dd (2.2, 8.9) 6a $4.01 d (10.1)$ 6b $3.54 m$ $6a$ oxybenzoic acid (I) $6b$ $3.54 m$ oxybenzoic acid (I) $7.87 d (8.2)$ 1 $5.39 d (7.7)$ $7.16 d (8.2)$ 1 $5.39 d (7.7)$ 2 $7.61 d (8.6)$ 5 $4.10 m$ $6a$ $4.73 d (12.5)$ $6b$ $4.38 d (7.3, 12.5)$ oxybenzoic acid (II) $7.51 d (8.6)$ 1 $5.13 d (6.7)$ $7.51 d (8.6)$ 1 $5.13 d (6.7)$ 2 $7.51 d (8.6)$ 1 $5.13 d (6.7)$ 2 $7.51 d (8.6)$ 1 $5.13 d (6.7)$ 2 $6a$ $4.389 t (7.8)$ 5 $4.27 m$ $6a$ $4.66 m$ $6a$ $4.60 m$ <	Coupling constants (J in Hz) in parentheses. Glucose in Glucose A Glucose 8.68 s 1 $5.37 d (7.7)$ 1 6.80 brs 2 $3.70 m$ 2 7.45 brs 3 3 3 $8.19 d (2.2)$ 4 $3.20-3.50$ 4 $7.10 d (8.9)$ 5 5 5 $8.42 dd (2.2, 8.9)$ 6a $4.01 d (10.1)$ 6a $6b$ $3.54 m$ 6b $3.54 m$ 6b oxybenzoic acid (I) Glucose B Rham 2 $7.87 d (8.2)$ 1 $5.39 d (7.7)$ 1 $7.87 d (8.2)$ 1 $5.39 d (7.7)$ 1 $7.61 d (8.6)$ 5 $4.10 m$ 5 $6.84m$ 6a $4.73 d (12.5)$ Me oxybenzoic acid (III) 4 $3.20-3.75$ 4 $7.51 d (8.6)$ 1 $5.13 d (6.7)$ 6 $6.84m$ $6a$ $4.73 d (12.5)$ Me oxybenzoic acid (III) $5.13 d (6$							

Table 1. ¹H NMR data for Purprocampanin of Campanura medium cv 'May Purple Margin'.(500 MHz in DMSO-d₆-CF₃CO₂D, TMS as an internal standard)

The	linkages	and/or	the	positions	of	attachment	of	glucoses	and	<i>p</i> -hydroxylbenzoic	acids	were
detei	mined by	the me	asure	ements of 2	NO	EDIF and N	OES	SY spectra	ı. By	irradiation at H-1 o	f Glc-A	A, the

appearance of a strong NOE signal at H-4 of cyanidin indicated Glc-A to be attached to OH-3 of cyanidin through a glucosidic bond. Moreover, a rather weak NOE signal was observed at H-1 of rhamnose as well as at those of other four proton signals of Glc-A, supporting that Glc-A bonded with rhamnose at OH-6. The presence of this binding system was confirmed by the detection of rutinose in the products of H_2O_2 degradation of pigment (2).⁵ By irradiation at H-1 of Glc-B, the strong NOE signals of H-6 and H-8 in cyanidin were observed. Thus, Glc-B was confirmed to attach to OH-7 of cyanidin. Furthermore, by irradiation of both H-1 protons of Glc-C and Glc-D, strong NOE signals were observed at H-3 and H-5 signals of p-hydroxybenzoic acid I, and also H-3 and H-5 signals of p-hydroxybenzoic acid II, supporting that p-hydroxybenzoic acid I is glycosylated with Glc-C at OH-4 of p-hydroxybenzoic acid I and also *p*-hydroxybenzoic acid II is glycosylated with Glc-D at OH-4 of *p*-hydroxybenzoic acid II (Figure 1). Similarly, rather weak NOEs were observed at H-2 and H-6 signals of *p*-hydroxybenzoic acid I by the irradiation at H-1 and H-6 of Glc-B indicating that Glc-B is acylated with p-hydroxybenzoic acid I at OH-6 of Glc-B. However, NOE signals were not observed at any proton signals of *p*-hydroxybenzoic acid III by above irradiations. Consequently, the structure of pigment (2), purprocampanin, was determined to be cyanidin $3-O-[6-O-(\alpha-L-rhamnopyranosyl)-\beta-D-glucopyranosyl]-7-O-{4-[6-O-(4-(6-O-(p-hydroxy$ benzoyl)- β -D-glucopyranosyl)oxybenzoyl)- β -D-glucopyranosyloxybenzoyl]- β -D-glucopyranoside, which is a new anthocyanin in plants.

Purprocampanin occurs mainly in the margin of *Campanula* 'May Purple Margin' flower petals, accompanying with rubrocampanin. The contents and distribution ratios of the pigments in the flowers are dependent on the flower stages and/or climate circumstances, and the flower color of C. 'May Purple Margin' is usually varied in the range of red to red-purple. Based on the above results, it is considered that increased distribution ratios of purprocampanin affect the change of the flower color of C. 'May Purple Margin' from red to purple.

REFERENCES AND NOTES

- 1. N. Terahara, K. Toki, N. Saito, T. Honda, I. Isono, H. Furumoto, and Y. Kontani, *J. Chem. Soc., Perkin Trans. 1*, 1990, 3327.
- 2. K. Brandt, T. Kondo, H. Aoki, and T. Goto, *Phytochemistry*, 1993, 33, 209.
- N. Saito, K. Toki, Y. Morita, A. Hoshino, S. Iida, A. Shigihara, and T. Honda, *Phytochemistry*, 2005, 66, 1852.
- 4. The flowers of *Campanula medium* cv 'May Purple Margin' were obtained from the plants growing in the green house of Minami-Kyushu University, Takanabe, Miyazaki.
- 5. J. B. Harborne, "Phytochemical Methods," second ed. Chapman and Hall, London, 1984.
- 6. 4-Glucosyloxybenzoic acid: UV-VIS λ_{max} : 246nm: Rf values (TLC): *n*-butanol-acetic acid-water (4 :

1 : 5, BAW) 70%; 6% AcOH 76%; H₂O 91%; *n*-butanol-ethanol-water (4 : 1 : 2.2, BEW) 66%: HPLC: Rt (min) 5.4.

- 7. HPLC was run in the same condition as described previously.³
- Pelargonidin 3-rutinoside-7-glucoside; UV-VIS λ_{max} (0.1%HCl-MeOH) 268, 504nm: Rf values (TLC): BAW 27%; 1%HCl 51%; BuH(2N HCl-*n*-BuOH, 1 : 1) 17%; AcOH-HCl (H₂O-acetic acid-water, 15 : 3 : 82) 75%: HPLC: Rt (min) 10.08.
- Cyanidin 3-rutinoside-7-glucoside; UV-VIS λ_{max} (0.1%HCl-MeOH) 283, 526 nm: Rf values (TLC): BAW 17%; 1%HCl 29%; BuH 9%; AcOH-HCl 59%: HPLC: Rt(min) 7.58.
- Rubrocampanin: UV-VIS λ_{max} (0.1%HCl-MeOH) 518 nm, Eacyl/Evismax=163%: Rf values (TLC): BAW 29%; 1%HCl 24%; BuH 36%; AcOH-HCl 59%: HPLC: Rt (min) 24.2: High resolution FABMS calc. For C₆₆H₇₃O₃₅: 1425.3932 *m/z*. Found: 1425.3893. ¹H NMR (500MHz, CF₃CO₂D-DMSO-*d*₆, 1 : 9): pelargonidin; δ 8.76 (1H, s, H-4), 8.74 (2H, d, *J*=9.2 Hz, H-2', 4'), 7.51 (1H, m, H-8), 7.10 (2H, d, *J*=9.2 Hz, H-3', 5'), *p*-hydroxybenzoic acid (I); δ 7.86 (2H, d, *J*=8.9 Hz, H-2, 6), 7.18 (2H, d, *J*=8.9 Hz, H-3, 5), *p*-hydroxybenzoic acid (II); δ 7.62 (2H, d, *J*=8.9 Hz, H-2, 6), 6.86 (2H, d, *J*=8.9 Hz, H-3, 5), *p*-hydroxybenzoic acid (III); δ 7.61 (2H, d, *J*=8.9 Hz, H-2, 6), 6.63 (2H, d, *J*=8.9 Hz, H-3, 5), *s*ugars: Glc-A; δ 5.37 (1H, d, *J*=8.0 Hz, H-1), 4.00 (1H, d, *J*=10.4 Hz, H-6a), 3.69 (1H, m, H-5), 3.63 (1H, d, *J*=8.3 Hz, H-2), Glc-B; δ 5.37 (1H, d, *J*=8.0 Hz, H-1), 4.75 (1H, m, H-6a), 4.35 (1H, dd, *J*=7.4 Hz, 11.9 Hz, H-6b), 4.12 (1H, m, H-5), 3.55 (1H, m, H-2), Glc-C; 5.13 (1H, d, *J*=7.3 Hz, H-1), 4.62 (1H, d, *J*=12.2 Hz, H-6a), 4.27 (1H, m, H-6b), 3.87 (1H, t, *J*=9.5 Hz, H-5), 3.41 (1H, m, H-2), Glc-D; δ 5.00 (1H, d, *J*=8.0 Hz, H-1), 4.43 (1H, d, *J*=10.4 Hz, H-6a), 4.15 (1H, m, H-6b), 3.81 (1H, t, *J*=9.2 Hz, H-5), 3.39 (1H, m, H-2), Rhamnose; δ 4.69 (1H, s, H-1), 3.74 (1H, d, *J*=1.2 Hz, H-2), 3.42 (1H, m, H-5), 1.16 (3H, s, -CH3).
- Purprocampanin (pigment 2): UV-VIS λ_{max} (0.1%HCl-MeOH) 537 nm, Eacyl/Evismax=159%: Rf values (TLC): BAW 23%; 1%HCl 18%; BuH 26%; AcOH-HCl 50%: HPLC: Rt (min) 22.9: High resolution FABMS calc. For C₆₆H₇₃O₃₆; 1441.3882 *m/z*. Found: 1441.3906. ¹³C NMR (125.65MHz, CF₃CO₂D-DMSO-*d*₆, 1 : 9): cyanidin; δ 162.3 (C-2), 146.0 (C-3), 133.2 (C-4), 155.2 (C-5), 103.1 (C-6), 165.2 (C-7), 96.0 (C-8), 156.9 (C-9), 112.5 (C-10), 119.6 (C-1'), 118.2 (C-1'), 141.0 (C-3'), 156.0 (C-4'), 116.0 (C-5'), 128.4 (C-6'), *p*-hydroxybenzoic acid (I); δ 123.5 (C-1), 131.1 (C-2), 115.3 (C-3), 146.3 (C-4), 115.6 (C-5), 131.1(C-6), 161.1 (COOH), *p*-ηψδροξψβενζοιχ αχιδ (II); δ 123.3(C-1), 131.0 (C-2), 115.3 (C-3), 146.6 (C-4), 115.3 (C-5), 131.0 (C-6), 160.7(COOH), *p*-hydroxybenzoic acid (III); δ 123.1(C-1), 131.4 (C-2), 114.5 (C-3), 145.1 (C-4), 114.5 (C-5), 131.4 (C-6), 162.0 (COOH), Sugars, Glc-A; δ 102.3 (C-1), 66.6 (C-6); Glc-B; δ 99.9 (C-1), 74.3 (C-5), 64.2 (C-6), Glc-C; 99.5 (C-1), 64.0 (C-6); Glc-D; δ 99.0 (C-1), 73.7 (C-5), 64.0 (C-6).