HETEROCYCLES, Vol. 68, No. 10, 2006, pp. 2037 - 2044. © The Japan Institute of Heterocyclic Chemistry Received, 9th June, 2006, Accepted, 26th July, 2006, Published online, 28th July, 2006. COM-06-10806

SYNTHESIS OF NOVEL PYRIMIDO[4,5-*c*]PYRIDAZINES AND 1,2-DIHYDRO-3a,7,9,9b-TETRAAZA-CYCLOPENTA[a]NAPHTHALEN-3-ONES AS POTENT INHIBITORS OF LYMPHOCYTE SPECIFIC KINASE (LCK)

John C. VanRens, Mark Sabat,* Todd A. Brugel, Jennifer Maier, Matthew J. Laufersweiler, Adam Golebiowski, Steve Berberich, and Biswanath De

P&G Pharmaceuticals, Health Care Research Center, 8700 Mason-Montgomery Rd, Mason, OH 45040, USA. E-mail address: sabat.mp@pg.com.

Abstract– This paper details the synthesis of a novel class of 1,2-dihydro-pyrimido[4,5-*c*]pyridazines and substituted 1,2-dihydro-3a,7,9,9b-tetraaza-cyclopenta[a]naphthalen-3-one. The most potent analogs disclosed showed low nanomolar activity for the inhibition of lck kinase.

INTRODUCTION

In our search for potent inhibitors of Lymphocyte Specific Kinase $(lck)^1$ we examined a series of pyridazine derivatives as potential scaffolds for the design of kinase inhibitors. This article details the synthetic methodology developed by our research team to access a novel class of bi- and tri-cyclic pyridazine derivatives including the initial lead compound (**1a**) and a more advanced analog (**2**). Pyridazines and their derivatives have been used for the development of various chemical agents² and potential therapeutics including kinase inhibitors.³ Various synthetic routes are available to obtain simple pyridazine analogs, however the heterocyclic core structure found in the lead molecules (**1a** & **b**) has been rarely described.^{4a,b} No literature reference was found detailing derivatives which contain a 3-aryl and 7-anilino group attached to the central ring system. Additionally the core structure of the tricyclic compound (**2**) has not been previously described.

Figure 1. Initial lead compound (1) and advanced analog (2).

RESULTS AND DISCUSSION

Our initial route toward the successful synthesis of pyridazine (1a) started with the exploration of conditions to synthesize the inactive model compound (1b). This analog contained a single Cl- substituent on the C-3 phenyl group and could be assembled directly using 4-chloro-5-methyl-2-methylsulfanyl pyrimidine⁵ (3) (Scheme 1). Deprotonation of the 5-methyl group with LiHMDS and addition to methyl-2-chlorobenzoate gave ketone (4). Treatment of this key intermediate with 1,2-dimethyl hydrazine hydrochloride in the presence of Hünig's base gave pyridazine (5). Oxidation of the thio-methyl moiety of this compound with *m*-CPBA afforded the corresponding sulfoxide which was used without further purification. Nucleophilic addition of 4-fluoroaniline to this material generated the desired final compound (1b) in modest yield.

Scheme 1. Reagents: a) methyl 2-chlorobenzoate, LiHMDS, THF, 27%; b) 1,2-dimethylhydrazine, Hünig's base, THF, reflux, 55%; c) *m*-CPBA, DCM, 0°C, 88%; d) 4-fluoroaniline, 120°C, 37%.

Extension of this synthetic methodology toward the 2,6-dichlorophenyl C-3 substituted analog (1a) however failed as addition of deprotonated **3** to methyl-2,6-dichlorobenzoate was unsuccessful. An alternative methodology toward these analogs was devised and is described in **Scheme 2**. Pyrimidine (**3**) was brominated with *N*-bromosuccinimide in the presence of catalytic benzoyl peroxide⁶ and the resulting benzylbromide (**6**) was treated with the anion of cyanohydrin (**7**) (generated from the corresponding aldehyde with TMSCN and ZnI_2)⁶ to yield ketone (**8**). Compound (**8**) was further reacted with *N*,*N*-dimethylhydrazine in the presence of Hünig's base, to give adduct (**9**). Treatment of this material with 1 N HCl solution gave the cyclized analog (**10**). Oxidation with *m*-CPBA and displacement with 4-fluoroaniline afforded the lead molecule (**1a**).

Scheme 2. Reagents: a) *N*-bromosuccinimide, cat. benzoyl peroxide, 1,2-dichloroethane, Δ , 66%; b) LDA, THF, -78°C, 39%; c) 1,2-dimethylhydrazine hydrochloride, Hunig's base, DMF, 32% d) 1 N HCl, EtOH, quant yield; e) *m*-CPBA, DCM, 91%, f) 4-fluoroaniline, NMP, 100°C, 32%

The modest biological activity (lck $IC_{50} = 3.2 \mu M$) of pyridazine (1a) led us to investigate the synthesis of tricyclic variants of these molecules. We believed that this change would rigidify the core structure, allow for a better interaction with the active site of lck, and result in greater potency.⁷ These analogs were constructed by the addition of tetrahydro-3*H*-pyrazol-3-one (11)⁸ to ketone (8) to give intermediate (12) (Scheme 3). Initial attempts to cyclize this material with 1 N HCl solution gave no evidence of reaction. Treatment of this adduct with conc. HCl generated the cyclic aminal (13) (isolated as a stable solid product). Exposure of aminal (13) to *p*-TsOH in refluxing toluene (using a Dean-Stark trap to remove the eliminated water) gave the desired product (14) after 4 h of vigorous reflux. Product (14) could be made directly from compound (12) using the above described reaction conditions (cyclization and elimination occurring in one pot). Oxidation of intermediate (14) with Oxone[®] and displacement with 4-fluoroaniline gave compound (15). This tricyclic pyridazine derivative displayed greatly improved biological activity (lck $IC_{50} = 124 \text{ nM}$).

Scheme 3. Reagents: a) Hunig's base, DMF, 80°C; b) conc. HCl, EtOH, Δ , 22%; c)*p*-TsOH, toluene, Dean Stark trap 130°C, 61%; d) Oxone, [®] THF, H₂O, 51%; e) 4-fluoroaniline, NMP, 100°C, 33%

Subsequent exploration of the SAR at the C-4 position of this tricyclic core structure ultimately resulted in the advanced analog (2) which possessed greatly improved biological activity (lck $IC_{50} = 47$ nM). The synthetic route used to access this compound containing a 2-chloro-5-hydroxy phenyl group at the C-4-position is described in 4. This Scheme analog required the use of 2-(2-chloro-5-methoxyphenyl)-2-(trimethylsilyloxy)acetonitrile (16) (formed by analogy to Scheme 2 from 2-chloro-5-methoxybenzaldehyde⁹) which was deprotonated with LDA and treated with the α -bromo pyrimidine (6) to form ketone (17). This material was treated as before (Scheme2) to generate compound (19). Oxidation of the thiomethyl group followed by nucleophilic addition of 4-(4-methylpiperazino)aniline gave desired material (20) which was then treated with BBr₃ to give the most advanced analog (2) in this series.

Scheme 4. Reagents: a) LDA, THF, -78°C, 21%; b) Hünig's base, DMF, 80°C, 95%; c) *p*-TsOH, toluene, Dean-Stark trap, 130°C, 79%; d) Oxone,[®] THF, H₂O, 25%; e) 4-(4-methylpiperazino)-aniline, neat, MW, 150°C, 22%; f) BBr₃, DCM, -78°C, 54%.

In summary we have described the design, and synthesis of two novel classes of heterocycles: the 1,2-dihydropyrimido[4,5-c]pyridazines and their tri-cyclic variants the 1,2-dihydro-3a,7, 9,9b-tetraaza-cyclopenta[a]naphthalen-3-ones. SAR studies around compound (**2**) which identified other low nanomolar lck inhibitors will be disclosed in a subsequent publication.⁷

EXPERIMENTAL

2-(4-Chloro-2-(methylthio)pyrimidin-5-yl)-1-(2-chlorophenyl)ethanone (**4**): Compound (**3**) (1.0 g, 5.7 mmol) was dissolved in THF (30 mL) and stirred at rt under N₂. LiHMDS in THF (5.7 mL, 1.0 M solution, 5.7 mmol) was added slowly to the stirred solution. After 15 min, methyl 2-chlorobenzoate (0.97 g, 5.7 mmol) was added to the mixture. After 1 h, additional LiHMDS (14.3 mL, 14.3 mmol) was added and the reaction mixture was stirred at rt overnight. The mixture was then diluted with H₂O (100 mL) and extracted with EtOAc (3 x 150 mL). The combined organic fractions were dried over Na₂SO₄ and concentrated. The crude residue was purified on a Biotage Flash 40M column eluted with 10-15% EtOAc/hexane. The product was obtained as yellow solid (0.48 g, 27% yield). ¹H NMR (300 MHz, CDCl₃) δ 8.39 (s, 1H), 7.30-7.42 (m, 4H), 4.22 (s, 2H), 2.56 (s, 3H); ESI/MS: 313.2 (M+H).

3-(2-Chlorophenyl)-1,2-dimethyl-7-(methylthio)-1,2-dihydropyrimido[4,5-*c***]pyridazine (5):** To a solution of compound (4) (0.25 g, 0.80 mmol) in THF (5 mL) was added *N*, *N*-diisopropylethylamine (2 mL) and *N*, *N*'-dimethylhydrazine hydrochloride (0.21 g, 1.60 mmol) and the mixture was refluxed overnight. The cooled reaction mixture was diluted with 1 N HCl (75 mL) and extracted with EtOAc (3 x 100 mL). The combined organic fractions were dried over Na₂SO₄ and concentrated. The crude residue was purified on a Biotage Flash 40S column eluting with 10% EtOAc/hexane. The product was obtained as yellow oil (0.14 g, 55% yield). ¹H NMR (300 MHz, CDCl₃) δ 7.76 (s, 1H), 7.26-7.37 (m, 4H), 6.30 (s, 1H), 3.31 (s, 3 H), 2.55 (s, 6H); ESI/MS: 319.1 (M+H).

3-(2-Chlorophenyl)-1,2-dimethyl-7-(methanesulfinyl)-1,2-dihydropyrimido[4,5-*c*]**pyridazine** (Scheme 1 step c): Compound (5) (0.14 g, 0.44 mmol) was dissolved in CH_2Cl_2 (5 mL) and cooled to 0°C under N₂. To this solution was added *m*-CPBA (0.10 g, 0.57 mmol) and the reaction was stirred for 1 h. The mixture was diluted with saturated aq. NaHCO₃ solution (50 mL) and extracted with CH_2Cl_2 (2 x 100 mL). The combined organics were washed with brine, dried over MgSO₄, and concentrated. The product was obtained as orange foam (0.13 g, 88.2% yield). This material was used without further purification. ESI/MS: 335.1 (M+H). **3-(2-Chlorophenyl)-***N*-(**4-fluorophenyl)-1,2-dimethyl-1,2-dihydropyridazino**[**3,4-***d*]**pyrimidin-7-amine** (**1b**): The previous sulfoxide (**3-(2-chlorophenyl)-1,2-dimethyl-7-(methanesulfinyl)-1,2-dihydropyrimido**[**4,5-***c*]**pyridazine**) (0.13 g, 0.39 mmol) and 4-fluoroaniline (0.56 g, 5.84 mmol) were combined and heated to 120°C for 4 h. LC/MS indicated complete reaction and the mixture was cooled and the residue was purified with preparative HPLC. The product was obtained as yellow solid (0.055 g, 37% yield). ¹H NMR (300 MHz, CDCl₃) δ 7.68 (s, 1 H), 7.56-7.62 (m, 3 H), 7.43-7.46 (m, 2 H), 7.27-7.33 (m, 2 H), 7.05 (t, *J* = 8.7 Hz, 2 H), 6.36 (s, 1 H), 3.35 (s, 3 H), 2.64 (s, 3 H). HRMS (FAB) calcd. for C₂₀H₁₇N₅ClF 381.1156, found 382.1236.

5-Bromomethyl-4-chloro-2-(methylthio)pyrimidine (6): To a solution of compound (**3**) (1.0 g, 5.7 mmol) in 1,2-dichloroethane (25 mL) was added *N*-bromosuccinimide (1.1 g, 6.3 mmol) and then benzoyl peroxide (0.14 g, 0.57 mmol). The reaction mixture was heated to reflux under N₂ atmosphere for 2 h. The crude reaction mixture was cooled, diluted with H₂O (100 mL) and extracted with CH_2Cl_2 (2 x 150 mL). The combined organics were dried over MgSO₄ and concentrated. The crude residue was purified on a Biotage Flash 40M column eluted with 10-20% EtOAc/hexane. The product was obtained as a yellow oil (0.95 g, 66% yield). ¹H NMR (300 MHz, CDCl₃) δ 8.52 (s, 1 H), 4.51 (s, 2 H), 2.62 (s, 3 H); ESI/MS: 254.5 (M+H).

2-(4-Chloro-2-methylsulfanylpyrimidin-5-yl)-1-(2,6-dichlorophenyl)ethanone (8): Compound (6) (9.9 g, 36 mmol) was taken up in THF (110 mL) and cooled to -78° C in a dry ice/acetone bath. A soln of LDA (20 mL, 1.8 M in THF/heptane/ethylbenzene, 36 mmol) was added slowly over 20 min to the cooled reaction mixture. To this solution was then added **2-(2,6-dichlorophenyl)-2-(trimethylsilyloxy)acetonitrile (7)**⁶ (6.4 g, 25 mmol) dissolved in THF (20 mL) and the mixture was stirred at -78° C for 2 h. The reaction was warmed to rt, diluted with H₂O (300 mL) and concentrated to remove most of the THF. The concentrated slurry was extracted with EtOAc (3 x 300 mL) and the combined organics were dried over Na₂SO₄ and stripped of solvent. The crude residue was purified by flash column chromatography eluted with 10-20% EtOAc/hexanes. The product was obtained as yellow oil (3.4 g, 39% yield). ¹H NMR (300 MHz, CDCl₃) δ 8.37 (s, 1 H), 7.30-7.40 (m, 3 H), 4.24 (s, 2 H), 2.58 (s, 3 H). *Anal.* Calcd for C₁₃H₉N₂OCl₂S: C, 44.91; H, 2.61; N, 8.06. Found: C, 44.54; H, 2.61; N, 8.20; ESI/MS: 348.6 (M+H).

3-(2,6-Dichlorophenyl)-1,2-dimethyl-7-methylsulfanyl-1,2-dihydropyrimido[**4,5-***c*]**pyridazine** (**10**)**:** To a stirred solution of compound (**8**) (0.12 g, 0.35 mmol) in DMF (4 mL), was added *N*,*N*-diisopropylethylamine (0.07 mL, 0.38 mmol) and *N*,*N*'-dimethylhydrazine hydrochloride (0.05 g, 0.38 mmol). The resulting mixture was heated at 100°C for 2 h and subsequently cooled, diluted with H₂O (40 mL) and extracted with EtOAc (3 x 75 mL). The combined organics were washed with brine, dried over Na₂SO₄ and concentrated. The crude residue was purified with preparative HPLC. The isolated material was the ring open intermediate (**9**) (0.04 g). This material was immediately dissolved in EtOH, to which was added HCl (1 N solution, 1 mL). The mixture was heated to 60°C for 2 h, cooled and concentrated to give the product as orange solid (0.04 g, 32% yield). ¹H NMR (300 MHz, CDCl₃) δ 7.85 (s, 1 H), 7.28-7.37 (m, 3 H), 6.14 (s, 1 H), 3.34 (s, 3 H), 2.62 (s, 6 H); ESI/MS: 354.3(M+H).

$\label{eq:constraint} 3-(2,6-Dichlorophenyl)-1,2-dimethyl-7-(methanesulfinyl)-1,2-dihydropyrimido [4,5-c] pyridazine and a statistical s$

and

3-(2,6-dichlorophenyl)-1,2-dimethyl-7-(methylsulfonyl)-1,2-dihydropyrimido[4,5-c]pyridazine: Compound (**10**) (0.035 g, 0.10 mmol) was dissolved in CH₂Cl₂ (2 mL) and cooled to 0° C under N₂. To this soln was added *m*-CPBA (3-chloroperbenzoic acid, 0.04 g, 0.20 mmol) and the reaction was stirred for 1 h at which point LC/MS analysis indicated a complete reaction. The mixture was diluted with saturated aq. NaHCO₃ (50 mL) and extracted with CH₂Cl₂ (2 x 50 mL). The combined organic layers

were washed with brine, dried over $MgSO_4$ and concentrated. The crude product was obtained as orange foam (0.035 g, 91% yield) was used in the next step without further purification. ESI/MS: 369.3 & 386.3 (M+H).

[3-(2,6-Dichlorophenyl)-1,2-dimethyl-1,2-dihydropyrimido[4,5-*c*]pyridazin-7-yl](4-fluoro-phenyl)-amine (1a): To a stirred solution of sulfoxide/sulphone mixture (0.035 g, 0.09 mmol) in NMP (2 mL) was added 4-fluoroaniline (0.2 mL, 2.1 mmol). The mixture was heated to 100°C for 2 h and subsequently cooled to rt. The crude residue was purified with preparative HPLC. The product was obtained as yellow solid (0.012 g, 32% yield). ¹H NMR (300 MHz, CDCl₃) δ 7.74 (s, 1 H), 7.59 (dd, *J* = 4.8 Hz, 9.0 Hz, 2 H), 7.39-7.42 (m, 2 H), 7.21-7.27 (m, 1 H), 7.19 (br s, 1 H), 7.05 (t, *J* = 8.7 Hz, 2 H), 6.14 (s, 1 H), 3.34 (s, 3 H), 2.70 (s, 3 H); ESI/MS: 417.3 (M+H).

1-{5-[2-(2,6-Dichlorophenyl)-2-oxoethyl]-2-methylsulfanylpyrimidin-4-yl}pyrazolidin-3-one (12): To a solution of compound (8) (2.0g, 5.76 mmol) in DMF (20 mL) was added tetrahydro-3*H*-pyrazol-3-one hydrochloride (11) (1.06 g, 8.63 mmol) and *N*,*N*-diisopropylethylamine (4.1 mL, 23.0 mmol) and the reaction was heated to 80°C for 3 h. The resulting mixture was cooled, diluted with H₂O (100 mL) and extracted with EtOAc (3 x 100 mL). The combined organic layers were washed with brine, dried over Na₂SO₄ and concentrated. The crude product (2.1 g) was obtained as a brown oil residue and used in the next step without further purification. ¹H NMR (300 MHz, CDCl₃) δ 8.03 (s, 1 H), 7.33-7.38 (m, 3 H), 4.25 (t, *J* = 8.4 Hz, 2 H), 4.19 (s, 2 H), 2.77 (t, *J* = 8.4 Hz, 2 H), 2.53 (s, 3 H); ESI/MS: 397.0 (M+H).

4-(2,6-Dichlorophenyl)-4-hydroxy-8-methylsulfanyl-1,2,4,5-tetrahydro-3a,7,9,9b-tetraazacyclopenta[a]

naphthalen-3-one (13): Compound (12) (0.09 g, 0.23 mmol) was dissolved in EtOH (5 mL) to which was added conc. HCl solution (37% aqueous, 3 mL). The mixture was heated to reflux for 30 min. Analysis with LC/MS indicated product formation. The mixture was then concentrated and purified by preparative HPLC to give (0.02 g, 22% yield) of product. ¹H NMR (300 MHz, CDCl₃) δ 8.01 (s, 1 H), 7.39-7.42 (m, 2 H), 7.27-7.32 (m, 1 H), 4.37 (t, *J* = 7.2 Hz, 2 H), 3.69 (s, 2 H), 2.87 (t, *J* = 7.2 Hz, 2 H), 2.57 (s, 3 H); ESI/MS: 397.0 (M+H).

4-(2,6-Dichlorophenyl)-8-methylsulfanyl-1,2-dihydro-3a,7,9,9b-tetraazacyclopenta[a]naphthalen-3-one (14): Compound (**12**) (2.1 g, 5.0 mmol) was taken up in toluene (30 mL) in a 100 mL round bottom flask. To this mixture was added *p*-TsOH monohydrate (3.8 g, 20.1 mmol) and the reaction was fitted with a Dean-Stark trap containing molecular sieves. The mixture was heated to a vigorous reflux for 4 h, and cooled, diluted with H₂O (100 mL) and extracted with EtOAc (3 x 100 mL). The combined organic layers were washed with brine, dried over Na₂SO₄ and concentrated. The product was obtained as brown oil (1.8 g) and used without further purification in the next step. ¹H NMR (300 MHz, CDCl₃) δ 7.55 (s, 1 H), 7.36-7.39 (m, 2 H), 7.25-7.30 (m, 1 H), 5.58 (s, 1 H), 4.00 (t, *J* = 8.7 Hz, 2 H), 2.76 (t, *J* = 8.7 Hz, 2 H), 2.54 (s, 3 H); ESI/MS: 380.0 (M+H).

4-(2,6-Dichlorophenyl)-8-methanesulfinyl-1,2-dihydro-3a,7,9,9b-tetraazacyclopenta[a]naphthalen-3-one (Scheme 3 step d): Compound (**14**) (0.10 g, 0.27 mmol) is dissolved in THF (2 mL) and stirred at rt. To this solution was added dropwise a solution of Oxone[®] (0.17 g, 0.27 mmol) dissolved in H₂O (2 mL). After 1 h a mixture of sulfoxide/sulfone was formed (2.5:1, analysis by LC/MS). The reaction mixture was diluted with saturated aq. NaHCO₃ (20 mL) and extracted with EtOAc (2 x 50 mL). The combined organics were washed with brine, dried over Na₂SO₄ and concentrated. The crude residue was purified by flash column chromatography eluting with 5% MeOH/EtOAc. The sulfoxide product was isolated as an orange solid (0.055g, 51% yield). ¹H NMR (300 MHz, CDCl₃) δ 7.52 (s, 1 H), 7.37-7.40 (m, 2 H), 7.27-7.33 (m, 1 H), 5.41 (s, 1 H), 3.98 (t, *J* = 8.7 Hz, 2 H), 3.24 (s, 3 H), 2.78 (t, *J* = 8.7 Hz, 2 H); ESI/MS: 396.3 (M+H).

4-(2,6-Dichlorophenyl)-8-(4-fluorophenylamino)-1,2-dihydro-3a,7,9,9b-tetraazacyclopenta[a]naphthalen-3-one (15): To a stirred solution of the above sulfoxide (0.035g,0.09 mmol) in NMP (1 mL), was added 4-fluoroaniline (0.09 g, 0.9 mmol) and the mixture was heated to 100° C under N₂ for 2 h. The reaction was allowed to cool to rt and the crude material was purified by preparative HPLC. The product was obtained as a yellow solid (0.013 g, 33% yield). ¹H NMR (300 MHz, CDCl₃) δ 7.24-7.55 (m, 7 H), 7.06 (t, *J* = 8.7 Hz, 2 H), 5.68 (s, 1 H), 4.01 (t, *J* = 8.7 Hz, 2 H), 2.78 (t, *J* = 8.7 Hz, 2 H); ESI/MS: 443.3 (M+H).

1-(2-Chloro-5-methoxyphenyl)-2-(4-chloro-2-methylsulfanylpyrimidin-5-yl)ethanone (17): By a procedure identical to the method used for the synthesis of compound (**8**) with **2-(2-chloro-5-methoxyphenyl)-2-(trimethylsilyloxy)acetonitrile (16)** (prepared from 2-chloro- 5-methoxybenzaldehyde). ⁸ ¹H NMR (300 MHz, CDCl₃) δ 8.40 (s, 1 H), 7.37 (d, *J* = 9.0 Hz, 1 H), 7.10 (d, *J* = 3.0 Hz, 1 H), 7.00 (dd, *J* = 3.0, 9.0 Hz, 1 H), 4.36 (s, 2 H), 3.85 (s, 3 H), 2.60 (s, 3 H). ESI/MS: 343.2 (M+H).

1-{5-[2-(2-Chloro-5-methoxyphenyl)-2-oxoethyl]-2-methylsulfanylpyrimidin-4-yl}pyrazolidin-3-one (18): By a procedure identical to the method used for the synthesis of compound (**12**). ¹H NMR (300 MHz, CD₃OD) δ 7.90 (s, 1 H), 7.52 (d, *J* = 3.3 Hz, 1 H), 7.32 (d, *J* = 8.7 Hz, 1 H), 6.93 (dd, *J* = 3.3, 8.7 Hz, 1 H), 4.89 (s, 2 H), 4.27-4.34 (m, 1 H), 3.88-4.12 (m, 1 H), 3.86 (s, 3 H), 2.90-2.99 (m, 1 H), 2.63-2.77 (m, 1 H), 2.59 (s, 3 H). ESI/MS: 393.9 (M+H).

4-(2-Chloro-5-methoxyphenyl)-8-methylsulfanyl-1,2-dihydro-3a,7,9,9b-tetraazacyclopenta[a]naphthalen-3-one (19): By a procedure identical to the method used for the synthesis of compound (**14**). ¹H NMR (300 MHz, CDCl₃) δ 7.66 (s, 1 H), 7.27-7.34 (m, 1 H), 6.85-6.91 (m, 2 H), 5.78 (s, 1 H), 4.07 (t, *J* = 8.7 Hz, 2 H), 3.82 (s, 3 H), 2.74 (t, *J* = 8.7 Hz, 2 H), 2.52 (s, 3 H). ESI/MS: 375.8 (M+H).

4-(2-Chloro-5-methoxyphenyl)-8-methanesulfinyl-1,2-dihydro-3a,7,9,9b-tetraazacyclopenta[a]naphthalen-3-one

(Scheme 4 step d): By a procedure identical to the method used for the synthesis of compound in Scheme 3 step d. ¹H NMR (300 MHz, CDCl₃) δ 7.76 (s, 1 H), 7.27-7.32 (m, 1 H), 6.86-6.92 (m, 2 H), 5.67 (s, 1 H), 4.06 (t, *J* = 8.7 Hz, 2 H), 3.83 (s, 3 H), 2.91 (s, 3 H), 2.78 (t, *J* = 8.7 Hz, 2 H). ESI/MS: 391.8 (M+H).

4-(2-Chloro-5-methoxyphenyl)-8-[4-(4-methylpiperazin-1-yl)-phenylamino]-1,2-dihydro-3a,7,9,9b-tetraazacyclopenta[a]naphthalen-3-one (20): The sulfoxide compound from the above step (0.05 g, 0.13 mmol) and 4-(4-methyl piperazin-1-yl)aniline (0.24 g, 1.3 mmol) were combined and heated to 140° C with stirring. After 2 h, the mixture was allowed to cool to rt and the crude mixture was purified by preparative HPLC. The product was obtained as an orange solid (0.015g, 22% yield). ¹H NMR (300 MHz, CD₃OD) δ 7.53-7.57 (m, 2 H), 7.41 (s, 1 H), 7.38 (br s, 1 H), 7.11-7.20 (m, 4 H), 7.23-7.27 (m, 1 H), 5.67 (s, 1 H), 4.11 (t, *J* = 8.7 Hz, 2 H), 3.88-3.97 (m, 4 H), 3.54-3.63 (m, 4H), 3.34 (s, 3 H), 3.08 (s, 3 H), 2.84 (t, *J* = 8.7 Hz, 2 H). ESI/MS: 519.0 (M+H).

4-(2-Chloro-5-hydroxyphenyl)-8-[4-(4-methylpiperazin-1-yl)phenylamino]-1,2-dihydro-3a,7,9,9b-tetraazacyclopenta[a] naphthalen-3-one (2): To a solution of the above compound (**20**) (0.14 g, 0.27 mmol) in CH₂Cl₂ (4 mL) at -78°C, was added BBr₃ (1 mL, 1.0 M in CH₂Cl₂, 2.7 mL, 2.7 mmol). The mixture was removed from the bath and allowed to warm to rt for 2 h and quenched with MeOH (5 mL). This crude mixture was then brought to pH 7 with saturated aqueous NaHCO₃ and extracted with CH₂Cl₂ (2 x 50 mL). The combined organics were washed with brine, dried over Na₂SO₄ and concentrated. The crude material was purified by preparative HPLC to give the product (0.07 g, 54% yield) ¹H NMR (300 MHz, CD₃OD) δ 7.43-7.48 (m, 2 H), 7.41 (s, 1 H), 7.38 (br s, 1 H), 7.11-7.20 (m, 4 H), 7.00-7.04 (m, 1 H), 5.67 (s, 1 H), 4.11 (t, *J* = 8.7 Hz, 2 H), 3.84-3.96 (m, 4 H), 3.56-3.66 (m, 4H), 3.00 (s, 3 H), 2.86 (t, *J* = 8.7 Hz, 2 H). ESI/MS: 504.0 (M+H).

ACKNOWLEDGEMENTS

We are grateful to V. Easwaran, Jeff Roesgen, and L. C. Hsieh for biological studies.

REFERENCES (AND NOTES)

- 1. J. S. Kamens, S.E. Ratnofsky, and G.C. Hirst, Curr. Opin. Invest. Drugs, 2001, 2, 1213.
- N. Haider, J. Heterocycl. Chem., 2002, 39, 511; V. Dal Piaz, S. Pieretti, C. Vergelli, M. C. Castellana, and M. P. Giovannoni, J. Heterocycl. Chem., 2002, 39, 523; B. U. W. Maes, J. Kosmrlj, and G. L. F. Lemiere, J. Heterocycl. Chem., 2002, 39, 535; G. Cignarella and D. Barlocco, J. Heterocycl. Chem., 2002, 39, 545; Y. Kurasawa and H. S. Kim, J. Heterocycl. Chem., 2002, 39, 551.
- T. Kinoshita, M. Warizaya, M. Ohori, K. Sato, M. Neya, and T. Fujii, *Bioorg. Med. Chem. Lett.*, 2006, 16, 55; N. Tamayo, L. Liao, M. Goldberg, D. Powers, Y. Tudor, V. Yu, L. Wong, B. Henkle, S. Middleton, R. Syed, T. Harvey, G. Jang, R. Hungate, and C. Dominguez, *Bioorg. Med. Chem. Lett.*, 2005, 15, 2409; C. J. McIntyre, G. S. Ponticello, N. J. Liverton, S. J. O'Keefe, E. A. O'Neill, M. Pang, C. D. Schwartz, and D. A. Claremon, *Bioorg. Med. Chem. Lett.*, 2002, 12, 689; K. F. Byth, N. Cooper, J. D. Culshaw, D. W. Heaton, S. E. Oakes, C. A. Minshull, R. A. Norman, R. A. Pauptit, J. A. Tucker, J. Breed, A. Pannifer, S. Rowsell, J. J. Stanway, A. L. Valentine, and A. P. Thomas, *Bioorg. Med. Chem. Lett.*, 2004, 14, 2249; L. C. Bloomer, L. L. Wotring, and L. B. Townsend, *Cancer Res.*, 1982, 42, 100.
- 4. (a) Y. Kimura, T. Miyamoto, J. Matsumoto, and S. Minami, *Chem. Pharm. Bull.*, 1976, 24, 2637. (b)
 S. Minami, Y. Kimura, T. Miyamoto, and J. Matsumoto, *Tetrahedron. Lett.*, 1974, 44, 3893.
- M. M. Youssef and A. M. S. Youssef, *Phosphorus, Sulfur and Silicon and the Relat. Elem.*, 2003, **178**, 67.
- 6. D. L. Coffen, B. Schaer, F. T. Bizzarro, and J. B. Cheung, J. Org. Chem., 1984, 49, 296.
- M. Sabat, J. C. VanRens, T. A. Brugel, J. Maier, M. J. Laufersweiler, A. Golebiowski, B. De, V. Easwaran, L. C. Hsieh, S. Berberich, E. Suchanek, and M. J. Janusz, *Bioorg. Med. Chem. Lett.*, 2006, 16, 4257.
- 8. S. T. Perri, S. C. Slater, S. G. Toske, and J. D. White, J. Org. Chem., 1990, 55, 6037.
- 9. S. R. Wilson, S. Tofigh, and R. N. Misra, J. Org. Chem., 1982, 47, 1360.