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Abstract – Oligocarboxamide molecular strands based on carboxamide between 
1,8-naphthyridine and pyridine, pyridine and pyridine, 1,8-naphthyridine and 
benzene, and pyridine and benzene have been prepared.  They have afforded 
various inclusion complexes with organic solvents.  Structural features of the 
inclusion complexes determined by X-Ray crystal structure analyses are 
described. 

Supramolecular chemistry has developed as the chemistry of the entities generated via intermolecular 
noncovalent interactions.1  Supramolecules, well-defined oligomolecular species, result from the specific 
intermolecular association of a few components.2  In particular, helicity codons based on specially 
designed sequences of heterocyclic units enforce the self-organization multiturn helical entities.3  A new 
family of oligocarboxamide strand (1) (Scheme 1) derived from 2,6-diaminopyridine and 
2,6-pyridinedicarboxylic acid has recently been reported.4-7  This compound not only self-organizes into 
a single helical monomer, but it reversibly assembles, giving rise to a double-helical dimer.  A new type 
of oligomeric strand (2) (Scheme 1) composed of alternating pyrimidine and 1,8-naphthyridine 
heterocycles has also been reported.8  Compound (2) also self-organizes into a helical monomer.  
Compound (1) can include H2O in the helical internal space.  Compound (2) can include a cesium ion in 
the helical internal space.  Oligocarboxamide molecular strands containing 1,8-naphthyridine and 
pyridine groups are expected to include other molecules.  We now report preparation of the strands 
containing 1,8-naphthyridine-pyridine ring (3a, b), pyridine rings (3c-e, 4), 1,8-naphthyridine and 
benzene ring (5a, b), and pyridine and benzene ring (5c-e) with carboxamide linkage (Scheme 2), as well 
as the ability of these molecules to form inclusion complexes. 
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Syntheses.  
Syntheses of the new molecular strands (3~5) have been achieved according to Schemes 3-6.  
2,7-Diamino-1,8-naphthyridine (6) 9-11 was monoprotected by treatment with di-tert-butyl dicarbonate  
(Boc2O) to give tert-butyl N-(7-aminonaphthyridin-2-yl)carbamate (7), which reacted with 
pyridine-2,6-bis(carbonyl chloride) derivatives (9a, b) prepared from the corresponding 
pyridine-2,6-dicarboxylic acid derivatives (8a6, b)  to give 3a, b in 58 and 37% yields, respectively. 12   
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2,6-Diaminopyridine (10) was monoprotected by treatment with di-tert-butyl dicarbonate (Boc2O) to give 
tert-butyl N-(6-aminopyridyl)carbamate (11) (Scheme 4).  The monoamine (11) reacted with 
pyridine-2,6-bis(carbonyl chloride) derivatives (9a, b) to give 3c, d in 66 and 54% yields, respectively. 
2,6-Diaminopyridine (10) was also monoprotected by treatment with benzyloxycarbonyl chloride to give 
benzyl N-(6-aminopyridyl)carbamate (12), which reacted with 4-decyloxypyridine-2,6-bis(carbonyl 
chloride) (9a) to give 3e in 66% yield (Scheme 4). 
The monoamine (11) reacted with pyridine-2,5-bis(carbonyl chloride) (13)13 to give 4 in 59% yield 
(Scheme 5). 
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The monoamine (7) reacted with 14b, c to give 5a, b in 57 and 40% yields, respectively (Scheme 6).  
The monoamine (11) reacted with 14a, b, c to give 5c, d, e in 23, 55, and 77% yields, respectively 
(Scheme 6). 
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Formation and characterization of inclusion complexes. 
The ability of the molecular strands synthesized here to form inclusion complexes with various organic 
solvent molecules was investigated.  These complexes were obtained according to the following general 
procedure.  Oligocarboxamide molecular strands were heated and solved with organic solvents.   
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Table 1  Host-guest Ratio of Inclusion Complex of 3-5

guest

acetone

methanol

3a 3b

toluene

cyclopentanone

cyclohexanone

AcOEt

THF

dioxane

DMF

DMSO

pyridine

CH2Cl2

1 : 1

1 : 1

1 : 1

1 : 1

1 : 2

1 : 2

1 : 1

1 : 1

1 : 1

1 : 1

1 : 1

1 : 1

3c 3d

1 : 2

1 : 1

1 : 1

1 : 1

3e

1 : 1

1 : 1

1 : 1

4

1 : 2

1 : 1

1 : 2

1 : 2

1 : 1

1 : 1

1 : 2

5a

1 : 1

1 : 1

5b

1 : 1

1 : 1

1 : 3

1 : 1

1 : 1

1 : 1

3 : 1

2 : 1

5c

1 : 1

5d 5e

1 : 2

1 : 1

1 : 2

1 : 2

1 : 2

1 : 2

1 : 1

1 : 1

1 : 1

1 : 2

1 : 1

1 : 1
 

 
The solution was kept at room temperature to allow the formation of inclusion complexes (Table 1).  
Table 1 shows the host-guest ratio for the inclusion complexes formed by 3a-e, 4, 5a-e, with typical 
organic solvents.  The host-guest ratio was determined by 1H NMR spectra or TG.  It should be noted 
that the p-substituted carboxamide hosts (4), (5b), and (5e) displayed significant ability to form such 
inclusion complexes.  This ability may be due to the host’s formation of a supramolecular zigzag chain 
in the crystal lattice, as indicated by X-Ray study14 for complexes of 5e, with guest molecules being 
accommodated between the chains. 
X-Ray crystal structure analyses14 have been carried out for the inclusion complexes, 3c•pyridine•0.5H2O 
and 5e•2DMF in order to reveal the site of the host molecule where the guest molecules are connected.  
Crystals were grown from corresponding pyridine and DMF solutions by slow evaporation at room 
temperature.  In 3c•pyridine•0.5H2O, the host molecule (3c) can be described as having a lobster shape, 
the head of which is the pyridine ring containing N12, with the two arms catching the guest molecule and 
the tail being formed by the aliphatic chain (Figure 1).  

   
                                                           

   
Figure 1. (a) The molecular structure of 3c•py•0.5H2O,  Figure 2. The crystal structure of 3c•py•0.5H2O 
       and (b) The side view.                            projected along the a axis.               
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The dihedral angles of the pyridine rings N10/C22-C26 and N14/C34-C38 in the arms of the host (3c) 
with respect to the head pyridine plane (N12/C28-C33) are 14.5(1)° and 8.3(1)°, respectively, and the 
dihedral angle between the arm pyridine rings is 22.0(1)°.  The N11-H11 and N13-H13 moieties of the 
amide groups form intramolecular hydrogen bonds with the head N12 atom.  The water O8 atom is 
located between the two arms of the host (3c), and is connected to both N9 and N15 atoms via N-H•••O 
hydrogen bonds.  The guest pyridine molecule is connected to one of the arms of the host (3c) by an 
N15-H15•••N16 hydrogen bond, but the pyridine ring is nearly perpendicular to and shifted away from 
the plane of the arm.  In the crystal, there are π-π stacking interactions between one of the arms of the 
host, where the N12 and N14 pyridine rings and amide groups C27/N11/O3 and C33/N13/O5 are 
involved.  These moieties are stacked along the a axis to form a column (Figure 2).  However, the 
overlap of the aromatic rings in the column is relatively poor. 
In 5e•2DMF, the host (5e) shows an extended and slightly curved structure, having a local inversion 
center (Figure 3).  The dihedral angles between the amide moiety and the aromatic ring, to which the 
amide group is connected, are 12.0(4)-32.2(3)°, except for the 1.3(3)° angle between the amide 
O3/C27/N11 and pyridine ring (N10/C22-C26).  The dihedral angles between the central benzene 
(C28-C33) and the pyridine rings (N10/C22-C26 and N13/C35-C39) are 26.7(4)° and 16.3(4)°, 
respectively, and that between the two pyridine rings is 16.5(4)°.  The guest DMF molecules are 
connected to the host molecule (5e) by N11-H11•••O7 and N12-H12•••O8 hydrogen bonds.  In the 
crystal, the host molecules are connected by N9-H9•••N13i (symmetry code (i) 3/2-x, 1/2+y, 1/2+z) and 
N10•••H14i-N14i hydrogen bonds, forming a polymer chain (Figure 4).  A side view of the chain can be 
seen in Figure 5, where the host molecules (5e) look like rods, with both ends being bound together via 
hydrogen bonds, forming zigzag chains along the [011] direction.  The guest DMF molecules are 
connected to the host by hydrogen bond and are located in the cavity between the chains.   

                        
             Figure 3. The molecular structure of 5e•2DMF.  The broken lines show  
                   N-H•••O hydrogen bonds between the host and guest molecules. 
 

          
   Figure 4. The molecular chain of the host 5e      Figure 5. The crystal structure of 5e•2DMF  
           connected via N-H•••N hydrogen bonds.         projected along the b axis. 

HETEROCYCLES, Vol. 68, No. 10, 2006 2027



 

       
Further studies of the relationship of the inclusion ability and the crystal structures for the 
oligocarboxamide molecular strands are now in progress. 
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