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Abstract – A concise synthesis of vigabatrin® has been achieved from 

trans-(2S,4R)-4-hydroxyproline via the key regioselective Baeyer-Villiger 

lactonization reaction. 

Based on the structural framework of trans-(2S,4R)-4-hydroxyproline (1), it possesses three functional 

groups that can be easily modified.1 The skeleton represents the significant feature for producing a series 

of different carbon framework using an efficient modification technique.2 Recently we have introduced 

some approaches toward anisomycin,2l epibatidine,2m pancracine,2n streptorubin B core,2o and statine2p 

employing trans-(2S,4R)-4-hydroxyproline (1) as the starting material. 

 

H2N

CO2H

vigabatrin (2)

N
H

CO2H

HO

trans-(2S,4R)-4-hydroxyproline (1)  
Figure 1. Structures of trans-(2S,4R)-4-hydroxyproline (1) and vigabatrin® (2) 

 

Vigabatrin® (2, γ-vinyl-GABA, 4-amino-5-hexenoic acid, Sabril®), which is a highly selective 

enzyme-activated inhibitor of GABA-T in mammalian brain,3a-b crosses the BBB and is used clinically 

primarily to control seizures refractory to other anticonvulsant drugs. Although racemic vigabatrin® is 

used in clinical practice, S-isomer is the pharmacologically active, whereas R-isomer is inactive. 

Vigabatrin® is therefore useful for treating disorders associated with depletion of GABA levels in central 

nervous system such as schizophrenia and epilepsy.3c-d Methodologies4-5 for the synthesis of vigabatrin® 

(2) have been described so far based on thermal rearrangement,4c-d catalytic palladium-mediated 

enantioselective syntheses,5a-d asymmetric syntheses starting from α-amino acids5e-j (e.g. methionine, 
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glutamic acid, and pyroglutamate) and other chiral materials,5k-l and large scale enzyme-catalyzed 

resolution.5m The other related vigabatrin® derivatives were synthesized as the potential biological 

inhibitors.6 In continuing the previous investigations and building upon these observations on 

trans-(2S,4R)-4-hydroxyproline (1) as the chiral material, we are interested in developing an easy 

approach to vigabatrin® (2) via the key regioselective Baeyer-Villiger lactonization reaction. 

As shown in Scheme 1, we studied the approach to vigabatrin® (2) from 1-tosyl-2-vinylpyrrolidin-4-one 

(3), which was prepared from trans-(2S,4R)-4-hydroxyproline (1) by our preliminary report.2m 

Regioselective Baeyer-Villiger lactonization2p,7 of ketone (3) was treated with m-chloroperoxybenzoic 

acid and sodium carbonate to afford sole tetrahydro-1,3-oxazin-6-one (4). During the lactonization 

process, the other ring-expanded framework was not observed. While poring over the related literature of 

Baeyer-Villiger ring expansion reaction, we found that Young and co-workers had developed copper(II) 

acetate-mediated ring expansion of 4-ketoprolines with m-chloroperoxybenzoic acid in modest yield. The 

most likely explanation would be that it is controlled by involvement of the nitrogen lone pair on 

substituted pyrrolidin-4-one.7 Reduction of the regioisomer (4) with lithium aluminum hydride was 

provided 1,3-aminoalcohol (5). Treatment of alcohol (5) with pyridinium chlorochromate was yielded 

aldehyde (6). One-carbon elongation of compound (6) was achieved via Wittig olefination of compound 

(6) and followed by Jones oxidation of the resulting enol ether to give an acid (7). Finally, synthesis of 

vigabatrin® (2) was accomplished via desulfonation8 and acidification.9 
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Scheme 1. Synthesis of vigabatrin® (2) 

In summary, we succeeded in accomplishing the synthesis of vigabatrin® (2) from the chiral starting 

material trans-(2S,4R)-4-hydroxyproline (1) via the key regioselective Baeyer-Villiger lactonization 

reaction. Currently studies are in progress in this direction.  
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D -174.31o (c 0.025, CHCl3); HRMS (ESI, M++1) 
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5.29 (dd, J = 1.5, 17.0 Hz, 1H), 5.25 (dd, J = 1.5, 10.5 Hz, 1H), 5.12 (d, J = 11.5 Hz, 1H), 4.35-4.31 

(m, 1H), 2.58 (dd, J = 7.5, 16.5 Hz, 1H), 2.50 (dd, J = 9.0, 16.5 Hz, 1H), 2.37 (s, 3H); 13C NMR 

(125 MHz, CDCl3) δ 167.57, 144.72, 135.07, 134.79, 129.91 (2x), 127.58 (2x), 117.18, 74.00, 52.50, 

33.72, 21.36; Anal. Calcd for C13H15NO4S: C, 55.50; H, 5.37; N, 4.98. Found: C, 55.69; H, 5.60; N, 

5.12.  

N-[1-(2-Hydroxyethyl)allyl]-4-methylbenzenesulfonamide (5).  

A solution of compound (4) (200 mg, 0.71 mmol) in THF (10 mL) was added to a rapidly stirred 

suspension of lithium aluminum hydride (76 mg, 2.0 mmol) in THF (20 mL) at 0 oC. The reaction 

mixture was stirred at rt for 2 h. Aqueous NH4Cl solution (15%, 2 mL) was added to the reaction 

mixture and filtered through a short silica gel column. The filtrate was dried, filtered and evaporated 

to yield crude compound. Purification on silica gel (hexane/EtOAc = 2/1) afforded aminoalcohol (5) 

(162 mg, 89%). [α]31.2
D +22.94o (c 0.017, CHCl3); HRMS (ESI) m/z calcd for C12H18NO3S (M++1) 

256.1007 found 256.1010; 1H NMR (500 MHz, CDCl3) δ 7.75 (d, J = 8.0 Hz, 2H), 7.29 (d, J = 8.0 

Hz, 2H), 5.57 (ddd, J = 6.0, 9.5, 16.5 Hz, 1H), 5.24 (d, J = 8.0 Hz, 1H), 4.97 (d, J = 16.5 Hz, 1H), 

4.95 (d, J = 9.5 Hz, 1H), 3.99 (br s, 1H), 3.86 (dt, J = 3.5, 12.5 Hz, 1H), 3.69-3.65 (m, 1H), 2.42 (s, 

3H), 2.37 (br s, 1H), 1.84-1.78 (m, 1H), 1.61-1.55 (m, 1H); 13C NMR (125 MHz, CDCl3) δ 143.39, 

137.61, 137.22, 129.58 (2x), 127.12 (2x), 115.78, 58.82, 53.48, 37.22, 21.50; Anal. Calcd for 

C12H17NO3S: C, 56.45; H, 6.71; N, 5.49. Found: C, 56.59; H, 6.54.; N, 5.85.  

N-[1-(2-Oxoethyl)allyl]-4-methylbenzenesulfonamide (6).  

A solution of compound (5) (130 mg, 0.51 mmol) in CH2Cl2 (5 mL) was added to a stirred mixture 

of pyridinium chlorochromate (431 mg, 2.0 mmol) and Celite (1.0 g) in CH2Cl2 (20 mL). After being 

stirred at rt for 20 h, the mixture was filtered through a short silica gel column. The filtrate was dried, 

filtered and evaporated to yield crude compound. Purification on silica gel (hexane/EtOAc = 5/1) 

afforded compound (6) (106 mg, 82%). [α]30.9
D +31.37o (c 0.005, CHCl3); HRMS (ESI) m/z calcd 

for C12H16NO3S (M++1) 254.0851, found 254.0852; 1H NMR (500 MHz, CDCl3) δ 9.65 (s, 1H), 

7.73 (d, J = 8.0 Hz, 2H), 7.29 (d, J = 8.0 Hz, 2H), 5.66 (ddd, J = 6.0, 10.5, 17.5 Hz, 1H), 5.28 (d, J = 

8.5 Hz, 1H), 5.02 (dd, J = 1.0, 17.5 Hz, 1H), 5.01 (dd, J = 1.0, 10.5 Hz, 1H), 4.25-4.19 (m, 1H), 

2.79-2.70 (m, 2H), 2.42 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 199.93, 143.58, 137.50, 135.97, 

129.65 (2x), 127.13 (2x), 116.84, 51.43, 48.46, 21.50.  

4-Aminohex-5-enoic acid (Vigabatrin®, 2).  

n-Butyllithium (1.0 mL, 1.6 M in hexane, 1.6 mmol) was added to a stirred solution of 

(methoxymethyl)triphenylphosphonium chloride (686 mg, 2.0 mmol) in THF (20 mL) at –78 oC. 

The orange red colored mixture was stirred at –78 oC for 1 h. A solution of aldehyde (6) (100 mg, 
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0.4 mmol) in THF (5 mL) was added to the reaction mixture at –78 oC via a syringe and further 

stirred at –78 oC for 2 h. The reaction was quenched with aqueous NH4Cl (15%, 10 mL) and the 

mixture was extracted with Et2O (3 x 20 mL) and the combined organic layers were washed with 

brine, dried, filtered and evaporated to yield the crude product. Excess Jones reagent (2 mL) was 

added to a solution of the resulting compound in acetone (10 mL) at rt. The mixture was stirred for 

20 min and treated with 2-propanol (1 mL) to destroy the unreacted oxidation reagent. After the 

solvent was removed, the residue was diluted with water (5 mL) and extracted with Et2O (4 x 10 

mL). The combined organic layers were washed with brine, dried, filtered and evaporated to afford 

crude product. Purification on silica gel (hexane/EtOAc = 1/1~1/2) afforded product (7) (76 mg, 

68% of two steps). HRMS (ESI) m/z calcd for C13H18NO4S (M++1) 284.0957, found 284.0961; 1H 

NMR (300 MHz, CDCl3) δ 7.77 (d, J = 8.5 Hz, 2H), 7.34 (d, J = 8.5 Hz, 2H), 5.82-5.70 (m, 1H), 

5.44-5.20 (m, 3H), 3.72-3.65 (m, 1H), 3.20 (br s, 1H), 2.45 (s, 3H), 2.28-2.10 (m, 2H), 2.00-1.82 (m, 

2H).  

A freshly prepared solution of sodium naphthalenide (1.0 M in THF, 2 mL, 2.0 mmol) was added to 

a solution of compound (7) (140 mg, 0.5 mmol) in THF (20 mL) at 0 oC for 2h. Water (5 mL) was 

poured into the reaction mixture and evaporated to afford the residue. Water (10 mL) was poured 

into the residue and extracted with Et2O (3 x 20 mL). Hydrochloric acid (12N, 5 mL) was added to 

the water layer at rt. Then the water was evaporated under reduced pressure to give the crude 

hydrochloride. The crude salt was purified by ion exchange chromatography to give the vigabatrin® 

(2) (58 mg, 71%). [α]28.2
D +12.02o (c 0.026, H2O); 1H NMR (300 MHz, D2O) δ 5.75-5.63 (m, 1H), 

5.32-5.26 (m, 2H), 3.69-3.61 (m, 1H), 2.21-2.07 (m, 2H), 1.94-1.71 (m, 2H); 13C NMR (75 MHz, 

D2O) δ 181.46, 132.92, 121.18, 54.06, 33.41, 28.94. The NMR spectral data were in accordance with 

those reported in the literature.5e 
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