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Abstract – 4-Aryl-1-tritylpyrazoles were prepared from the cross coupling 

reaction of aryl Grignard reagents with 4-bromo-1-tritylpyrazoles in the presence 

of 0.2 mol% PdCl2(dppf) as catalyst. To deprotect the trityl group, 

4-phenyl-1-tritylpyrazole was reacted with TFA to produce 4-arylpyrazole in 

quantitative yield.

Heteroaromatic compounds have attracted considerable attention in the design of biologically active 

molecules and advanced organic materials. In particular, five-membered heterocyclic compounds such as 

pyrazoles1 have been utilized in the development of new pharmaceutical compounds, for instance, 

molecular chaperone Hsp90 inhibitors, cyclooxygenase-2 (COX-2) inhibitors, and so on.2 Hence, there is 

much interest in the development of a practical method for the preparation of pyrazoles in synthetic 

organic chemistry. The route to substituted pyrazoles has been established; it involves the 1,3-dipolar 

cycloaddition reaction of hydrazine with β-dicarbonyl compounds.1 Therefore, the synthesis of 

4-monosubstituted pyrazole requires a β-dialdehyde, specifically, a malonodialdehyde derivative.3 The 

malonodialdehyde is, however, more unstable than a β-diketone4 and the synthesis of malonodialdehydes 

having various substituents requires many steps. On the other hand, the direct synthesis of 4-substituted 

pyrazoles has been reported5,6, including the Stille and Suzuki cross coupling route. However, there 

remain issues to be resolved in these cross coupling syntheses, namely, the Stille coupling route was low 

yield and impracticality and the Suzuki coupling route was low yield and required high reaction 

temperature. For these reasons, synthetic organic chemists have embarked on finding a new route for the 

synthesis of 4-substituted pyrazoles. Herein we report the synthesis of 4-arylpyrazoles via 0.2 mol% 

palladium catalyzed cross coupling reaction of 4-bromo-1-tritylpyrazole with various aryl Grignard 

reagents (Scheme 1).  
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Scheme 1 

4-Halo-1-tritylpyrazole was reacted with phenylmagnesium bromide in the presence of various catalysts 

(Table 1). Nickel catalysts are widely used for the cross coupling reaction of Grignard reagents with a 

variety of heterocycles.7 However, the nickel-complex-catalyzed cross coupling reactions proceeded in 

low yields to obtain coupled pyrazoles (Entries 1-4). PdCl2(PPh3)2 also catalyzed the coupling reaction of 

bromopyrazoles with phenylmagnesium bromide in low yield (Entry 5). By contrast, when PdCl2(dppf) 

was used to catalyze the reaction of Grignard reagent with iodopyrazole at 0 °C for 36 h, the coupled 

product was obtained in excellent yield (Entry 6). When the bromopyrazole (1b) was reacted with 

phenylmagnesium bromide under 0 °C for 30 hours, the coupling products were gave only 8% yields 

(Entry 7) and biphenyl, which was Wultz coupling products, was detected as a byproduct. However, the 

Table 1. Coupling reaction of phenylmagnesium bromide with 4-bromo-1-tritylpyrazoles 
in the presence of various catalysts.a 

 
 

 Entry Substrate Catalyst, (mol%) Condition Yield (%)b 

 1 1a NiCl2(dppp), 5 0 °C, 36 h 19c 

 2 1a NiCl2(dppp), 10 RT, 24 h 26 c 

 3 1b NiCl2(dppe), 17 reflux, 3 h 26 

 4 1b NiCl2(dppp), 10 reflux, 2 h 31 

 5 1b PdCl2(PPh3)2, 1 reflux, 2 h 25 

 6 1a PdCl2(dppf), 5 0 °C, 36 h 96c 

 7 1b PdCl2(dppf), 5 0 °C, 30 h  8c 

 8 1b PdCl2(dppf), 1 RT, 24 h 90d 

 9 1b PdCl2(dppf), 0.2 reflux, 4 h 99 
aReaction conditions: 1 (1.0 mmol), phenylmagnesium bromide (1.1 equiv), catalyst in 
THF under N2. Substrate concentration is 0.25 M. bIsolated yield. cSubstrate 
concentration is 0.1 M. dSubstrate concentration is 0.5 M. 
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use of high substrate concentration (0.25 M) and high reaction temperature shortened the reaction time 

and reduced the amount of catalyst required by the coupling reaction (Entry 8). Finally, 0.2 mol% 

PdCl2(dppf) was found to catalyze the cross coupling reaction of 4-bromo-1-tritylpyrazole with 

phenylmagnesium bromide in quantitative yield (Entry 9).8 

Additionally, 4-substituted pyrazoles were prepared by reacting various aryl Grignard reagents with 

4-bromo-1-tritylpyrazoles (Table 2).9 Coupled pyrazoles with m- and p-methoxyphenylmagnesium 

bromide were prepared in excellent yields and 4-(2’-methoxyphenyl)pyrazole was also obtained in good 

yield (Entries 1-3). 4-Methoxymethylphenylpyrazole is easily accessible to a variety of ether derivatives 

 

Table 2. 0.2 mol% PdCl2(dppf) catalyzed cross coupling reaction of 
4-bromo-1-tritylpyrazole with various aryl Grignard reagents. 

 

 
 
 Entry Ar Time (h) Yield (%)a 

 1  2 92 

 2  2 93 

 3  4 70b 

 4  2 86 

 5  4 60b 

 6  4 76 

 7  4 n.r.c 

 8  3 n.r.c 
aIsolated yield. bArylmagnesium bromide (1.5 equiv). cn.r. = no reaction 
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because of bearing protected the hydroxyl group (Entry 4). By contrast, a moderate yield of 

3’,4’-dimethoxyphenylpyrazole was obtained in the reaction with 1.5 equiv of 

3,4-dimethoxyphenylmagnesium bromide (Entry 5). It is noteworthy that 2’-thienylpyrazole was afforded 

in good yield from 2’-thienylmagnesium bromide and bromopyrazole (Entry 6). Unfortunately, no 

pyridyl- or nitrophenylpyrazoles were obtained from 4-pyridylmagnesium bromide10 or 

2-nitrophenylmagnesium bromide11 (Entries 7 and 8). In addition, 4-bromo-3,5-dimethyl-1-tritylpyrazole 

was reacted with phenylmagnesium bromide in the presence of 0.2 mol% PdCl2(dppf) to obtain the 

3,5-dimethyl-4-phenyl-1-tritylpyrazole in 33% yield (Scheme 2). 12 It can be seen that the dimethyl groups 

sterically hindered the cross coupling reaction. 

 
Scheme 2 

Finally, to deprotect the trityl group, 4-phenyl-1-tritylpyrazole was reacted with trifluoroacetic acid 

(TFA) and 4-phenylpyrazole was obtained in quantitative yield. 

In summary, we have achieved the 0.2 mol% palladium catalyzed cross coupling reaction of aryl 

Grignard reagents with 4-bromo-1-tritylpyrazole to yield 4-aryl-1-tritylpyrazole quantitatively. 

Deprotection of 4-phenyl-1-tritylpyrazole was achieved with TFA to obtain 4-phenylpyrazole in excellent 

yield.  
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