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Abstract – The synthesis of optically active octahydropyrrolo[3,2-c]pyridine 

derivatives was achieved via the asymmetric intramolecular cycloaddition of 

azomethine ylides using copper-bisphosphine complexes.  

Cu(OTf)2─(R,R)-CHIRAPHOS is a suitable catalyst for the reactions.

The development of effective methods for the synthesis of optically active 

octahydropyrrolo[3,2-c]pyridine derivatives, intermediates in the synthesis of naphthyridinomycin1 and 

cyanocycline A,2 is an important topic.  The catalytic asymmetric intramolecular 1,3-dipolar 

cycloaddition of azomethine ylides would be a powerful tool for the synthesis of optically active 

octahydropyrrolo[3,2-c]pyridine derivatives.  An intermolecular version of this type of cycloaddition has 

recently been reported.3  We recently reported the exo-selective asymmetric intermolecular 

cycloaddition of azomethine ylides generated from N-alkylidene glycine esters using Cu(II)-BINAP 

complexes.4  In the field of asymmetric intramolecular cycloaddition, only one example5 has been 

reported, namely the reaction of azomethine ylides generated from N-arylmethylidene amino acids.  

However, the method has limitations, in that an aromatic ring is involved in the framework of the 

cycloadduct.  The reaction of azomethine ylides with no aryl group on the dipoles would lead to 

octahydropyrrolo[3,2-c]pyridine derivatives.  Herein we report asymmetric intramolecular cycloaddition 

of azomethine ylides generated from N-alkylidene glycine esters containing a carbon-carbon double bond 

using chiral copper(II) complexes for the synthesis of optically active octahydropyrrolo[3,2-c]pyridine 

derivatives (Scheme 1).  

In a first attempt, according to the reaction conditions used in our previous study,4 the reaction of imine 
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(1a)6 in the presence of copper(II) triflate (20 mol%), (S)-BINAP (22 mol%), triethylamine (40 mol%), 

and MS4A in dichloromethane was examined, but the reaction did not proceed at all (Scheme 2).  To 

find suitable reaction conditions, reactions using 1,3-diphenylphosphinopropane (DPPP) instead of 

(S)-BINAP in dichloromethane, benzene, acetonitrile, and THF were examined.  Among the solvents 

tested, THF was found to be the best for the intramolecular cycloaddition (yields of 2a; CH2Cl2: 32%, 

C6H6: 36%, CH3CN: 0%, THF: 49%).  The cycloadduct (2a) was obtained as a single diastereomer, the 

stereochemistry of which was determined by nOe measurement (cis-orientation [H(3a)-H(7a) (12%) and 

H(2)-H(7a) (8%)]).  The structure of the product indicates that the reaction proceeded via an endo 

approach.   
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Asymmetric reactions of imine (1a) catalyzed by copper(II) triflate and some bidentate chiral phosphine 

ligands in THF were also investigated.  A low enantioselectivity was observed in the reaction catalyzed 

by Cu(OTf)2─(S)-BINAP which was used in our previous work.4  The absolute configuration of the 

cycloadduct has not been assigned so far.  The reaction using (R)-(S)-PPFA, a P-N ligand, gave 

cycloadduct (2a) in low chemical yield and ee.  When Cu(OTf)2─(R,R)-DIOP, derived from tartaric acid 

was employed, a low yield and ee also resulted.  The use of (S,S)-BDPP led to an increase in both the 

yield and ee of the cycloadduct (2a).  Furthermore, when the reaction was catalyzed by 

Cu(OTf)2─(R,R)-CHIRAPHOS cycloadduct (2a) was produced in good yield and ee (82% yield, 60% 

ee).7 
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The reactions of imines (1b,c) bearing substituents on the β-position of the N-acryloyl amide in imine (1) 

were also carried out (Scheme 3).  The reaction of imine (1b) gave the corresponding cycloadducts (2b) 

in low yield and ee (24 h, 44%, 6% ee).  When imine (1c) was employed, an electron withdrawing 

methoxy carbonyl group, accelerated the reaction of imine (1c) and good yield and ee were obtained (12 h, 

89%, 59% ee).   

In summary, the synthesis of optically active octahydropyrrolo[3,2-c]pyridine derivatives was achieved via 

the asymmetric intramolecular cycloaddition of azomethine ylides using copper-bisphosphine complexes.  

Cu(OTf)2─(R,R)-CHIRAPHOS is a suitable catalyst for the reactions.  The cycloaddition would be 

applicable to the synthesis of N-containing fused heterocycles. 
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