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Abstract–3,4,5,6-Tetrasubstituted-2-pyridone synthesis via nucleophilic addition 

of active methine compounds to dialkynyl imines directed to the synthesis of 

(-)-A58365A has been developed. The reaction of active methine compounds 

such as malonic esters or β-keto esters to dialkynyl imines provided 

3,4,5,6-tetrasubstituted-2-pyridones in moderate to good yields.

There are many biologically active compounds containing a 2-pyridone structure.1 (-)-A58365A (1) 

having a 2-pyridone structure is one of them, which was obtained from a fermentation broth of the 

bacterium Streptomyces chromofucus in the Eli Lilly laboratories and found to be an 

angiotensin-converting enzyme inhibitors at nanomolar concentrations (Scheme 1).2  
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Scheme 1. Synthetic Plan for the Synthesis of (-)-A58365A 
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This property makes it of potential value as a lead compound for the design of drugs to control blood 

pressure. In connection with the synthesis of (-)-A58365A (1), the development of the synthetic methods 

of functionalized 2-pyridone is important as a result of the large number of biologically active compounds 

containing a 2-pyridone structure and also as dienes in Diels-Alder cycloadditions.3-5 We have already 

reported 5-alkoxycarbonyl-2-pyridone and 5-acetyl-2-pyridone (4) synthesis via the nucleophilic addition 

of malonic esters or β-keto esters (2), respectively, to alkynyl imines (3) derived from 2-alkynals (Eq. 1).6  
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On the basis of these results, we planed a synthesis of (-)-A58365A (1) as shown in Scheme 1.7 Padwa 

group has already reported the total synthesis of (-)-A58365A via 2-pyridone intermediate (5),7b and 

therefore, the preparation of the 2-pyridone (5) provides a formal synthesis of (1). 2-Pyridone 

intermediate (5) would be obtained from (6) via olefin metathesis. The 2-pyridone (7) would be 

synthesized using our 2-pyridone synthesis via nucleophilic addition of β-keto ester (8)8 to dialkynyl 

imine (9). 

Table 1. 2-Pyridone (7) Synthesis via Nucleophilic Addition of (8) to (9) 
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We investigated the effect of the substituents R1 and R2 of dialkynyl imine (9) (Table 1).9 When the 

reaction of β-keto ester (8) with imine (9a) was carried out in 1,4-dioxane in the presence of NaOEt under 

reflux, the desired 2-pyridone (7a) was obtained in 8% yield, because the imine (9a) decomposed under  
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Table 2. 2-Pyridone Synthesis Using Dialkynyl Imines 
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the reaction conditions (Entry 1). The reaction of imine (9b) gave the 2-pyridone (7b) in 7% yield along 

with the recovered imine (9b) in 84% yield since the initial 1,4-addition did not sufficiently proceed due 

to the steric bulk of the imine (9b). Use of imine (9c) afforded 2-pyridone (7c) in 9% yield (Entry 3). The 

reaction was very sensitive to the concentration of the imine (9). When the imine (9c) in 1,4-dioxane was 

added dropwise using a syringe pump to the solution of the sodium salt of β-keto ester (8) in 1,4-dioxane 

under reflux, 2-pyridone (7c) was obtained in 51% yield (Entry 4). 

Next, we investigated the scope of substrates in a 3,4,5,6-tetrasubstituted-2-pyridone (12) synthesis via 

nucleophilic addition of active methine compounds (10) to dialkynyl imines (11). The results are 

summarized in Table 2. 

First, we examined the reaction of a symmetrical dialkynyl imine with an active methine compound. The 

reaction of dialkynyl imine (11a) with the sodium salt of diethyl methylmalonate (10a) proceeded 

smoothly in 1,4-dioxane under reflux for 6 h to give the desired 2-pyridone (12a) in 66% yield (Entry 

1).10 In the case of ethyl 2-methyl-3-oxobutanoate (10b), 2-pyridone (12c) was obtained in 52% yield 

(Entry 3). Not only an aromatic group but also an aliphatic counterpart as a substituent of imine (11) 

worked well (Entries 2 and 4). Next, we examined the reaction of an unsymmetrical dialkynyl imine.9 The 

1,4-addition reaction of the sodium salt of diethyl methylmalonate (10a) to unsymmetrical dialkynyl 

imine (11c) proceeded regioselectively to give only 2-pyridone (12e) in 71% yield where the less 

hindered sp carbon reacted preferentially (Entry 5). Even increasing the steric bulk of the nucleophile as 

in the case with diethyl allylmalonate (10c), 2-pyridone (12f) possessing a double bond isomerized 

internally was obtained in 55% yield (Entry 6). The use of ethyl 2-allyl-3-oxobutanoate (10d) gave 

2-pyridone (12i) in 42% yield accompanied by 2-pyridone (12i’) in 12% yield (Entry 9). 

We propose a plausible reaction mechanism as shown in Scheme 2. Methalloallenamine (13) would be 

generated via a regioselective 1,4-addtion reaction of the sodium salt of active methine compound (10) to 

dialkynyl imine (11) and undergoes an intramolecular cyclization to give cyclobutenoxide intermediate 

(14). The cyclobutenoxide intermediate (14) would be transformed into metalloenamine (15) via a 

ring-opening reaction, and the subsequent cyclization would give 3,4,5,6-tetrasubstituted 2-pyridone (12). 

In summary, we have found a 3,4,5,6-tetrasubstituted-2-pyridone synthesis via nucleophilic addition of 

active methine compounds to dialkynyl imines. Numerous methods for the synthesis of 2-pyridones have 

been reported. However, the present 2-pyridone synthesis is an attractive alternative method because 

substituted malonic esters, β-keto esters (10), and dialkynyl imines (11) are readily available, respectively 

and alkynyl groups in 2-pyridones can also be easily transformed into alkenyl and alkyl groups. The 

synthesis of (-)-A58365A from 2-pyridone (7c) is now in progress. 
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Scheme 2. Plausible Reaction Mechanism 
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