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Abstract – Synthesis studies feature results for variations of Heck reaction 

strategies utilized for aryl substitution processes toward construction of the fully 

functionalized AB ring system of zoanthenol.  A novel intramolecular Michael 

reaction is described, and the deployment of sensitive allylation reactions are 

reported. 

Studies of the chemical constituents of colonial species of the genus Zoanthus have led to the discovery 

of a new class of marine alkaloids.  Zoanthamine (1) is a typical representative of this family,1 and 

zoanthenol (2) is a singular example possessing an aromatic A-ring.2  The polycyclic zoanthamine 

alkaloids elicit a spectrum of biological activity, including anti-inflammatory properties, analgesic effects, 

antitumor activity, inhibition of platelet aggregation and anti-osteoporetic effects.3,4  Miyashita and 

coworkers have communicated the first synthesis of norzoanthamine (3).5  Early investigations have also 

described a general strategy for construction of the enamine-aminal heterocyclic core,6 and several 

studies have reported a pathway for synthesis of the AB and ABC ring systems of 1 (or 3).7  Hirama and 

coworkers have illustrated an interesting approach toward zoanthenol (2).8  Herein we report exploratory 

findings of aryl substitution processes specifically directed towards construction of a functionalized AB 

system of zoanthenol. 

Our preliminary investigations have examined a number of Heck cross-coupling opportunities9 using 

substituted aryl triflates to address the substitution pattern of zoanthenol.  Early efforts are summarized 

by the reactions of 4 and 6 efficiently providing dihydrobenzofurans (5 and 7).  While formation of these  
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five-membered furanyl systems was not unanticipated based on our previous studies of amphidinolide 

K,10 the inclusion of excessive amounts of potassium cyanide in the case of 4 or TIPS protection in 6 did 

not impede the intramolecular cyclization.  In contrast, the homologous silyl ether (8) afforded Heck 

reactions that included use of the allenic alcohol (9), conveniently yielding the E-α,β-unsaturated ketone 

(10) [Pd(dba)2, dppb, Me2NAc, KOAc, Bu4NCl, (55%)] in a single step.11  In these cases, no evidence of 

pyran ring formation was observed. 
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In addition, the corresponding aryl bromide (11) featured distinct reactivity leading solely to the nitrile 

(12) without cyclization to the benzofuran.  The increased nucleophilicity of potassium cyanide in polar 

media was assumed to lead to rapid substitution of bromide in the palladium intermediate prior to 

reductive elimination.12  Internal coordination of the free hydroxyl group in 11 was believed to inhibit 

palladium insertion with the neighboring olefin.  In the event of silation [tBuMe2SiOTf, collidine, 

CH2Cl2 at –78 °C, (92%)], the TBS ether (13) provided for the intramolecular Heck cyclization to give 

diastereomeric 14 and 15 (dr 1:1.5) in 86% isolated yield (Scheme 1).  After separation by silica gel 

chromatography, these isomers were fully characterized, and the relative stereochemistry of the major 

nitrile product (15) was established via a nuclear Overhauser (nOe) difference experiment as summarized 

by the % enhancements shown.  Additionally, treatment of 15 with aqueous trifluoroacetic acid gave the 

bridged lactone (17), confirming these assignments.   
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Scheme 1. 

13

Br

CH3O

H3C

H3C

OSitBuMe2

CH3 Pd(OAc)2
PPh3

KCN
18-crown-6
p-xylene, 100 °C
 (86%)

14  R = CN
16  R = H (82%)

CH3O

H3C

H3C

OSitBuMe2

CH3

R

+

15

CH3O

H3C

H3C

OSitBuMe2

CH3

NC

TFA/H2O
CH2Cl2
at 22 °C
(70%)

17

CH3O

H3C

CH3

H

CH3

O

O

OCH3
H

O
SitBuMe2

H
H

H
CH3

NC

H3C

H3C

12.6%

12.5%

2.1%

12 21
20

NOE % Enhancement Data for 15.

 
 
Our successful palladium-catalyzed cyclization of the A/B ring system of zoanthenol illustrated formation 

of a quaternary stereogenic carbon with cyanation.13  However, cyclization of TBS ether (13) proved 

equally effective using sodium formate as a hydrogen donor leading to the gem-dimethyl substitution of 

16 [Pd(OAc)2, PPh3, NaO2CH, n-Bu4NBr in DMF at 135 °C].14  Based on this body of results, the 

synthesis of a key aryl bromide precursor toward zoanthenol was devised (Scheme 2).  Optically active 

aldehyde (18) was prepared via the known Evans aldol procedure15  and allylation conditions of 

β-chelation control16 using magnesium bromide precomplexation smoothly provided a homoallylic 

alcohol in 73% yield (dr 9:1).  Esterification of the pure alcohol with diethylphosphonoacetic acid gave 

20, which permitted convenient introduction of the allylic stannane in 21.  Chiral, nonracemic aldehyde 

(22) was prepared using asymmetric conjugate addition methodology beginning with enone (23).17  

Although yields of methylcopper addition to 23 were consistently high, diastereomeric selectivity ranged 

from 5:1 to 17:1 depending on temperature variations and reaction scale.  In all cases, recrystallization 

of these mixtures afforded 24 as a white solid (dr > 18:1).  Reductive removal of the chiral auxiliary and 

mild oxidative elimination gave the terminal olefin (25), which was stored for ozonolysis to 22 

immediately prior to use. 
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Facile allylation utilizing 21 (Scheme 2) in the presence of BF3 etherate gave a 1.6:1 ratio of 

diastereomeric alcohols (26) without evidence of epimerization at C19.  Furthermore, oxidative 

deprotection afforded diol (27) for Dess-Martin oxidation 18  and subsequent intramolecular 

Horner-Wadsworth-Emmons cyclization to yield the six- membered lactone (28) (98% for 2 steps).  It is 
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Scheme 2. 
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noteworthy that this sequence provided the sensitive 28 as a pure stereoisomer without epimerization or 

conjugation of the β,γ-alkene. 

Finally, our hypothesis for intramolecular conjugate addition leading to an appropriately functionalized 

C-ring precursor of zoanthenol was successfully demonstrated via addition of stoichiometric base to 28 at 

–78 °C with formation of Z(O)-tin enolate and warming to 22 °C.19  Bicyclic lactone (29) was isolated in 

40% yield in addition to the recovery of 20–25% of starting 28.  The undesired R-configuration at C21 is 

favored owing to allylic strain considerations.20  However, conjugated 30 was obtained via initial 

generation of the aryl radical and internal H-abstraction at C21.  Ketone (30) was not stable and readily 

isomerized to 31 (with partial isomerization at C19).  Unfortunately, all attempts for Heck cyclizations of 

29 with palladium catalysis in the presence of sodium formate led solely to the reduced arene identified as 

31. 

An alternative route has been explored via the allylation of 22 with stannane (32), which is prepared in an 

analogous fashion as described in Scheme 2.  Condensation has provided diastereomeric alcohols (33) 

(74% yield, dr 1:1), and these efforts have led to a successful intramolecular reductive Heck cyclization, 

which is accompanied by oxidation to the C20 ketone (34) (dr 1.4:1 at C12).  Interestingly, these 

unoptimized reactions also produce small amounts (8–14% yields) of alcohol (35), which is obtained as a 

single hydroxy epimer.  Substantial quantities of starting 33 have been recovered (47%) suggesting 

opportunities for further development. 
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In conclusion, our exploratory studies toward zoanthenol have uncovered significant aspects of reactivity 

for palladium-catalyzed aryl substitution processes leading to cyclizations of functionalized 

six-membered rings.  Labile precursors are efficiently prepared via sensitive allylation reactions, and a 

novel intramolecular Michael reaction has established a bridged [3.3.1]bicyclic lactone.  Further studies 

toward zoanthenol are underway. 
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