HETEROCYCLES, Vol. 70, 2006, pp. 83 - 86. © The Japan Institute of Heterocyclic Chemistry Received, 1st August, 2006, Accepted, 12th September, 2006, Published online, 15th September, 2006. COM-06-S(W)21

CRYSTAL STRUCTURES OF N,N'-BIS(1-NAPHTHYLMETHYL)-1,4,10,13-TETRAOXA-7,16-DIAZACYCLOOCTADECANE COMPLEXED WITH LITHIUM AND ZINC THIOCYANATES[†]

Kanji Kubo,^{a*} Tadamitsu Sakurai,^b Hajime Takahashi,^c and Haruko Takechi^c

^aSchool of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293 Japan. kubo-k@hoku-iryo-u.ac.jp ^bDepartment of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, Kanagawa-ku, Yokohama 221-8686, Japan ^cFaculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293 Japan

Abstract – The crystal structures of N,N'-bis(1-naphthylmethyl)-4,13-diaza-18-crown-6 (1) complexed with LiNCS and Zn(NCS)₂ were analyzed by X-Ray crystallography. Diazacrown (1) formed a unique 1:2 complex with LiNCS, while Zn(NCS)₂ complex of 1 consisted of an ion pair with [Zn(NCS)₄]²⁻ and $1\cdot 2H^+$. The two naphthalene rings in the crystals adopt an *anti* conformation with respect to each other.

Photo-responsive supramolecular systems are of great significance particularly for their potential application to nanoscale devices for cation sensor and switch.^{1,2} There are extensive investigations toward the characterization of photoinduced electron transfer (PET) fluoroionophores which is known as one of the typical electron donor-spacer-electron acceptor systems. Recently, it was found that the azacrown ethers having two fluorescent pendants show a strong tendency to form inter- and intramolecular

exciplexes and display fluorescence in low quantum yields.³ The addition of metal cation enhanced the fluorescence intensity of N,N'-bis(1-naphthylmethyl)-1,4,10,13-tetraoxa-7,16-diazacyclo-octadecane (1) by a factor of 1.1-41. Moreover, the crystal structures of 1, 1·KNCS and 1·Ba(NCS)₂·H₂O were elucidated by

[†]Dedicated to Professor Steven M. Weinreb on the occasion of his 65th birthday.

X-Ray crystallographic analysis. The K⁺ and Ba²⁺ cations were surrounded by the diazacrown nitrogen atoms to form 1:1 complexes with the host crown ether (1). The diazacrown ether (1) showed the following cation selectivity: $Mg^{2+} > K^+ > NH_4^+ > Ba^{2+} > Rb^+ > Zn^{2+} > Na^+ > Cs^+ > Ca^{2+} > Li^+$. However, the crystal structure of complex formed between 1 and metal cation having low association ability for this host molecule has not been elucidated. We now report the crystal structures of 1·LiNCS and 1·Zn(NCS)₂, aiming at contribution to a deeper understanding of PET systems.

The single crystals of 1.2LiNCS and $(H_2.1)[Zn(NCS)_4]$ were obtained from the MeOH-CHCl₃ mixtures containing 1 and a large excess of metal thiocyanate. The molecular structure of 1.2LiNCS⁴ is shown in

Figure 1. Diazacrown ether (1) formed a unique 1:2 complex with LiNCS. The complex (1.2LiNCS) is centrosymmetric and the two naphthalene rings adopt an *anti* conformation with respect to one another across the diazacrown ether ring. The Li1 coordinates to the O1, O2ⁱ (symmetry code: (i) 1-x, -y, 1-z), N1, and N2 atoms in a distorted

Figure 1. An ORTEP drawing of 1.2LiNCS showing 50% probability displacement ellipsoids. H atoms are omitted.

Fable	1. Bond	lengths	(A), b	ond angle	es (°), a	nd torsion	angles ((°) of 1	$1 \cdot 2 \text{LiNCS}$
-------	---------	---------	--------	-----------	-----------	------------	----------	----------	--------------------------

S1-C18 N2-C18 S1-C18 O1-Li1 O2-Li1 ⁱ N1-C17 ⁱ N1-Li1	1.636(2) 1.171(2) 1.6362 (18) 1.975 (3) 2.032 (3) 1.483 (2) 2.179 (3)	C11-N1-Li1 C18-N2-Li1 S1-C18-N2 O1-Li1-O2 ⁱ O1-Li1-N1 O1-Li1-N2 O2 ⁱ -Li1-N1	126.01 (13) 141.13 (18) 177.38 (17) 128.25 (16) 82.66 (12) 107.67 (16) 82.50 (12)	N1-Li1-N2 Li1-N2-C18-S1 C12-N1-C11-C1 C17 ⁱ -N1-C11-C1 N1-C12-C13-O1 O1-C14-C15-O2 O2-C16-C17-N1 ⁱ	152.23 (17) 12 (3) -75.44 (17) 163.58 (14) -46.96 (19) -70.14 (17) -52.58 (17)
NI-L11 N2-Li1	2.179 (3) 1.963 (3)	$\begin{array}{c} O2^{i}\text{-L1I-N1}\\ O2^{i}\text{-Li1-N2} \end{array}$	82.50 (12) 108.27 (16)	O2-C16-C17-N1 ¹	-52.58 (17)
	1.905 (5)		100.27 (10)		

symmetry code: (i) 1-x, -y, 1-z

tetrahedral mode. The six legating donor atoms (O1, O2, N1, O1ⁱ, O2ⁱ, N1ⁱ) of diazacrown ether deviate from their mean plane by 0.11-0.16 Å. The Li1-O distance is close to the sum of the corresponding ionic radii (Li-O: 2.13 Å = 0.73 + 1.40 Å) and that (1.93 Å) of the 1,5,9-trioxacyclododecane-LiNCS complex.⁵ The Li1-N distance is shorter than the sum of the corresponding ionic radii (Li-N: 2.44 Å = 0.73 + 1.71 Å).⁶ The thiocyanate anion sits on the Li1 and displace 61° from the diazacrown-ring mean plane (defined by the N1, O1, and O2ⁱ atom) and is existed by near the naphthalene ring (the N2-C10 distance: 3.470 Å). This means that photoinduced electron transfer from thiocyanate anion to the naphthalene chromophore could occur easily. The Li-N distance of the thiocyanate anion is 1.963 Å, which is nearly equal to that (1.958 Å) of the 1,5,9-trioxacyclododecane-LiNCS complex.⁵ To our knowledge, this is the first case of two Li⁺ cation coordination to 4,13-diaza-18-crown-6 ether.

Zinc thiocyanate complex of **1** consists of an ion pair with $[Zn(NCS)_4]^{2-}$ and $1\cdot 2H^+$, as shown in Figure 2.

Figure 2. An ORTEP drawing of $(H_2 \cdot 1)[Zn(NCS)_4]$ showing 50% probability displacement ellipsoids.

Zn1-N3 1.9599(17) N5-C37 1.170(3) Zn1-N6-C38 178.68(19) Zn1-N4 1.958(2) N6-C38 1.163(2) Zn1-N3-C35-S1 55(9))
Zn1-N4 1 958(2) N6-C38 1 163(2) Zn1-N3-C35-S1 55(9)	
Zn1-N5 1.950(2) N3-Zn1-N4 106.24(8) Zn1-N4-C36-S2 -173(7)	
Zn1-N6 1.9628(19) N3-Zn1-N5 110.57(7) Zn1-N5-C37-S3 60(18)	
S1-C35 1.617(2) N3-Zn1-N6 110.30(8) Zn1-N6-C38-S4 117(17)	
S2-C36 1.604(2) N4-Zn1-N5 110.36(10) N1-C12-C13-O1 54.1(2)	
S3-C37 1.608(2) N4-Zn1-N6 109.21(8) O1-C14-C15-O2 -64.5(2)	
S4-C38 1.623(2) N5-Zn1-N6 110.09(8) O2-C16-C17-N1 ⁱⁱ 56.8(2)	
N2-C34 ⁱ 1.508(3) Zn1-N3-C35 170.32(19) N2-C29-C30-O3 52.0(2)	
N3-C35 1.162(2) Zn1-N4-C36 166.2(2) O3-C31-C32-O4 -67.4(2)	
N4-C36 1.166(3) Zn1-N5-C37 171.26(17) O4-C33-C34-N2 ⁱ 55.2(2)	

Table 2. Bond lengths (Å), bond angles (°), and torsion angles (°) of $(H_2 \cdot 1)[Zn(NCS)_4$

symmetry code: (i) 2-x,-y,2-z, (ii) 2-x,-y,1-z

The Zn^{2+} cation did not coordinate to the nitrogen atom of **1**. The zinc cation of $[Zn(NCS)_4]^{2-}$ has a tetrahedral coordination, and the Zn-N bond lengths is in the range of 1.95—1.96 Å, which is close to that of $(HTen)_2[Zn(NCS)_4]^8$ and (4,10-bis(tropon-2-yl)-4,10-diaza-1,7-dioxacyclododecane)-zinc*tetrakis*-(thiocyanato)zinc.⁹ Both the two naphthalene rings and the two hydrogen atoms bonded to the ammonium

nitrogen atoms of $1 \cdot 2H^+$ adopt *anti* conformations with respect to one another across the diazacrown ether ring. The ion pair structure of $(H_2 \cdot 1)[Zn(NCS)_4]$ resembles that of *N*,*N*,*N'*,*N'*-tetraethyl-9,10anthracenedimethanamine dihydrogen tetrachlorozincate(II).¹⁰ The nitrogen atoms of diazacrown did not coordinate to Zn^{2+} . This suggests that the emission intensity of **1** would be greatly enhanced by forming a complex with proton generated from the Zn(NCS)₂-water system.

Thus, the crystal structures of PET fluoroionophores-derived metal salt complexes would afford much useful information on the stoichiometry in these complex and the coordination structure.

ACKNOWLEDGEMENTS

This research was partially supported by a "Frontier Research Project" from the Ministry of Education, Sports, Culture, Science and Technology, Japan.

REFERENCES AND NOTES

- H. G. Löhr and F. Vögtle, Acc. Chem. Res., 1985, 18, 65; A. W. Czarnik, Acc. Chem. Res., 1994, 27, 302; L. Fabrizzi and A. Poggi, Chem. Soc. Rev., 1995, 197; B. Valeur and I. Leray, Coord. Chem. Rev., 2000, 205, 3; A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, and T. E. Rice, Chem. Rev., 1997, 97, 1515; K. Kubo and T. Sakurai, Heterocycles, 2000, 52, 945.
- K. Kubo, 'Topics in Fluorescence Spectroscopy: Advanced Concepts in Fluorescence Sensing,' Vol. 9, ed. by C. D. Geddes, J. R. Lakowicz, Springer, New York, 2005, pp. 219-247.
- K. Kubo, R. Ishige, N. Kato, E. Yamamoto, and T. Sakurai, *Heterocycles*, 1997, 45, 2365; K. Kubo, T. Sakurai, N. Kato, and A. Mori, *ibid.*, 1999, 51, 1229.
- 4. Crystal data of **1**·2LiNCS, C₃₆H₄₀Li₂N₄O₄S₂, Mr = 670.74, Monoclinic, $P2_1/c$, a = 7.932 (2)Å, b = 18.261 (4)Å, c = 11.602 (3)Å, $\beta = 92.681$ (16)°, V = 1678.7 (7) Å³, Z = 2, $D_x = 1.327$ Mg m⁻³, refinement on F^2 (*SHELXL97*),¹¹ $wR(F^2) = 0.1081$, R(F) = 0.0387.
- 5. J. Dale, J. Eggestad, S. B. Fredriksen, and P. Groth, Chem. Commun., 1987, 1391.
- R. D. Shannon and C. T. Prewitt, *Acta Crystallogr.*, 1969, **B25**, 925; R. D. Shannon, *ibid.*, 1976, A32, 751.
- 7. Crystal data of $(H_2 \cdot 1)[Zn(NCS)_4]$, $C_{38}H_{44}N_6O_4S_4Zn$, Mr = 842.42, Triclinic, P1, a = 9.713(2) Å, b = 11.339(3) Å, c = 20.368(5) Å, a = 90.739(14) °, $\beta = 101.951(14)$ °, $\gamma = 113.263(13)$ °, V = 2005.0(8) Å³, Z = 2, $D_x = 1.395$ Mg m⁻³, refinement on F^2 (*SHELXL97*),¹¹ $wR(F^2) = 0.0873$, R(F) = 0.0338.
- 8. S. R. Petrusenko, V. N. Kokozay, and I. O. Fritsky, Polyhedron, 1997, 16, 267.
- 9. E. Yamamoto, K. Kubo, and A. Mori, Bull. Chem. Soc. Jpn., 2003, 76, 627.
- 10. K. Kubo and A. Mori, J. Mater. Chem., 2005, 15, 2902.
- 11. G. M. Sheldrick, *SHELXL97*: Program for X-Ray crystal structure determination and refinement, Göttingen University, Germany, 1997.