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Abstract – Synthetic studies toward clavilactone A (1), using olefin metathesis as 

key steps, have been described.  The ring-opening/ring-closing metathesis of 3-  

bromo-2-[1-(1-cyclobutenyl)carboxyl-2-propenyl]-1,4-dimethoxybenzene (9) 

constructed a γ-arylated butenolide (11).  The ring-opening/ring-closing/cross 

metathesis of 2-[1-(1-cyclobutenyl)carboxyl-2-propenyl-1,4-dimethoxybenzene 

(19) in the presence of methallyl acetate (20) provided 2-[4-((E)-5-acetoxy- 

4-methyl-3-pentenyl)-5-oxo-2,5-dihydrofuran-2-yl]-1,4-dimethoxybenzene (21). 

The π-allyl palladium complex-mediated intramolecular cyclization of 21 for 

construction of the 11-membered lactone moiety in the clavilactones was also 

explored.    

Clavilactones A (1), B (2) and C (3) (Figure 1) were isolated from cultures of the fungus 

Basidiomycetous Clitocybe clavipes.1  Their relative structures were deduced based on NMR studies and 

finally determined by a single-crystal X-ray analysis of the dimethyl ether derivative of 1.  These natural 

products consist of a 1,4-dihydroxybenzene or a 1,4-benzoquinone connected with a 11-membered 

lactone, which shares with an α,β-epoxy-γ-lactone ring.  Later, structurally resembling clavilactones D 

(4) and E (5) were isolated from C. clavipes by using different culture conditions.2  Clavilactones A (1), 

B (2) and C (3) exhibited antifungal and antibacterial activity and inhibited the germination of Lepidium 

sativum.1  In addition, compounds (1), (2) and (4) exhibited potent inhibitory activity against epidermal 

growth factor receptor (EGF-R) tyrosine kinase.2,3  Herein, we describe our synthetic studies toward the 

clavilactone A (1), which are characterized by tandem olefin metathesis. 

 
‡ This paper is dedicated to Professor Steven M. Weinreb (The Pennsylvania State University), with 
respect and admiration, on the occasion of his 65th birthday. 
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Figure 1. Structures of the clavilactones 

 
During this decade, progress in olefin metathesis has brought significant benefit in the field of natural 

product synthesis.4  We have reported some total syntheses of biologically intriguing natural products by 

using olefin metathesis for the construction of their core skeletons.5-8  In the first total synthesis of natural 

(+)-mycoepoxydiene, a structurally unique natural product having a 9-oxabicyclo[4.2.1]nona-2,4-diene 

core skeleton, we have developed the one-pot ring-opening/cross/ring-closing metathesis of 

7-oxanorbornene.6  For the total synthesis of 1, we planned the use of two metathesis approaches, i.e., 

ring-opening/ring-closing metathesis or ring-opening/ring-closing/cross metathesis for concise synthesis 

of the functionalized butenolides such as 11 and 21 as a clue to the 11-membered lactone formation.  

The first approach was commenced with known trisubstituted benzaldehyde (6)9 (Scheme 1).  

Compound (6) was converted to allylic alcohol (7)10 by addition of vinylmagnesium bromide.  

Esterification of the allylic alcohol (7) in the presence of lithium hexamethyldisilazide [LiN(TMS)2] with 

a mixed anhydride (8), prepared from cyclobutenecarboxylic acid11 and pivaloyl chloride, provided ester 
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Reagents and conditions: a) CH2=CHMgBr, THF, 83%; b) LiN(TMS)2, THF, -78 ºC, then 8, 94%; c) 10 
(10 mol%), benzene, reflux, 27% after 4 cycles; d) 12, Pd(PPh3)4, CsF, 1,2-dichloroethane, 80 ºC, 58%. 
 

Scheme 1. Preparation of 13 via the ROM/RCM of 9 

 
(9).  We explored the one-pot ring-opening/ring-closing metathesis (ROM/RCM) of 9 using 1st 

generation Grubbs catalyst (10).12  This metathesis reaction was quenched when half amount of 9 was 
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consumed owing to that prolonged reaction time decreased the yield of 11 significantly.  The unreacted 

9 was recovered for reuse.  As a result, 2-(3-butenyl)-1,4-butenolide (11) was obtained in 27% yield 

after three recycles. 13  As concerns the reaction mechanism for the formation of 11, we consider that the 

allylic olefin reacts first with the Grubbs catalyst producing a ruthenium carbene complex (i),14 which is 

converted to complex (ii) by a ring-opening/ring-closing process (Scheme 1).  Then, another 9 reacts 

with ii, producing 11 with generation of i, which resumes the second catalytic cycle.  The Stille coupling 

of bromobenzene (11) and methallyltributylstannane (12)15 in the presence of CsF provided the 

methallylated product (13).16 The addition of CsF was required for this coupling to maintain good 

yields.17 

With substrate (13) in hand, we examined the RCM of 13 under a variety of conditions for the formation 

of the 11-membered lactone part of 1 (Scheme 2).  We examined the following reaction conditions: 1) 

the Grubbs catalyst (10) in refluxing CH2Cl2 or benzene, 2) the Grubbs 2nd generation catalyst (15)18 in 

refluxing CH2Cl2 or benzene, and 3) the 2nd generation Hoveyda-Grubbs catalyst19 in refluxing benzene.  

Unfortunately, none of the conditions employed provided the desired RCM product (14).  In most cases, 

an undesired dimerized product and/or a cross metathesis product with styrene were obtained.  On the 

other hand, when 13 was treated with a high loading of the Grubbs catalyst (15) in refluxing benzene, 

1,4-dimethoxy-6-methylnaphthalene (16)20 was obtained.  This conversion can be explained by the 

mechanism shown in Scheme 2. The ROM/RCM reaction occurred between the carbene derived from the 

methallyl olefin and the butenolide olefin in iii, which followed aromatization of the resulting iv 

accompanied by elimination of the carboxylic acid (v).  
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Scheme 2. The attempted RCM of 13.  

 
We next investigated another access to the clavilactone core structure by an intramolecular Friedel-Crafts 

allylation using allylic acetate (21) via a π-allyl palladium complex21 (Scheme 3).  For the synthesis of 
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21, commercially available 17 was converted to 19 via allylic alcohol (18) by the reaction sequence 

analogous to that shown in Scheme 1.  The tandem metathesis of 19 was carried out using the Grubbs 

catalyst (15) in the presence of methallyl acetate (20), which provided an α,γ-substituted butenolide (21) 

in a yield of 22%.22  This reaction started with the ROM/RCM reactions of 19 leading to intermadiate 

(vi), followed by the cross metathesis (CM) with 20.  We examined first the use of the Grubbs 1st 

generation catalyst (10) (30 mol%) in benzene for this tandem metathesis. Under these conditions, we 

observed the formation of the ROM/RCM product (vi), which was characterized by comparison with an 

authentic sample prepared in a separate experiment.  However, the CM of vi with 20 did not proceed 

using 10.  On the other hand, treatment of the ROM/RCM product vi with 20 in the presence of 15 

afforded 21.  Consequently, we used the Grubbs catalyst (15) for the tandem metathesis of 19.  

With the substrate (21) in hand, we explored the possibility of the attack of the electron-rich aromatic 

carbon neighboring the methoxy group in 21 to the π-allyl palladium species, generated from the 

methallyl acetate moiety, to construct the desired 11-membered lactone ring.  In contrast to our 

expectation, brief treatment of 21 with a catalytic amount of Pd(PPh3)4 in the presence of K2CO3 at 80 °C 

produced a 2-oxospiro[4.5]decane-type compound (22)23 in 59% yield as a sole product.24  As shown in 

Scheme 3, oxidative addition of the methallyl acetate moiety to a Pd(0) complex and base-mediated 

deprotonation of the γ-proton in the butenolide ring provide an intermediary dienolate (vii).  Then the 

nucleophilic α-carbon of the dienolate attacks to the π-allyl palladium species regioselectively to produce 

22, accompanying regeneration of the Pd(0) catalyst.25 
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Scheme 3. Preparation of 21 and formation of 22 by a Pd(0)-catalyzed intramolecular alkylation   
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In conclusion, we have developed concise syntheses of 1,4-dimethyoxybenzenes (11), (13) and (21), 

which possess a functionalized butenolide ring at C-2.  These synthetic approaches rely on the 

ROM/RCM or ROM/RCM/CM strategy for the construction of the γ-arylated butenolide moiety.  

Further synthetic studies toward the total synthesis of clavilactones are in progress in this laboratory. 
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