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Abstract – A monoradical vinylcyclopropane cyclization-fragmentation route to 

eight-membered rings was investigated.  6-Exo-trig cyclization was preferred 

over the alternative 7-endo-trig cyclization, due to entropic factors and the 

position of a radical stabilizing electron withdrawing group.  Changing position 

of the electron withdrawing group was not enough to entice 7-endo-trig 

cyclization. 

 

Eight-membered heterocyclic and carbocyclic rings are found in many natural products. A number of 

strategies have been employed to tackle their synthesis.1 One route that we have developed uses a 

vinylcyclopropane with an appended trimethylenemethane (TMM) diradical such as 2 to initiate a 

fragmentation-cyclization sequence that leads to both 6 and 8-membered rings.2  For example, when the 

cyclopropyl diazene (1) was heated in refluxing benzene, both the [6.3.0] and [4.3.0] carbocyclic systems 

were produced (Scheme 1).  We have applied this chemistry to the synthesis of a simplified taxotere 

model system.3   
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Scheme 1.  TMM Vinylcyclopropane route to the [6.3.0] ring system 
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One path that accounts for the formation of the eight-membered ring begins with a 7-endo-trig cyclization 

of diyl (5a) to afford the distonic cyclopropyldicarbinyl diyl (5b) whose collapse leads to 5c (Scheme 2).  

In an effort to examine these ideas in greater detail and to expand upon the scope of the chemistry, we 

elected to explore a related monoradical (6a).  We wished to determine whether it would close onto the 

appended vinylcyclopropane moiety to afford 6b and subsequently undergo fragmentation similar to that 

observed in the TMM diyl chemistry.  Kilburn has used a similar cyclization-fragmentation strategy; 

there, too, a methylenecyclopropane served as a radical trap.4 

 

 

5a 5b 5c

R'

R

R'

R

R'

R

 
 

6a

R'

R

R'

R R

R'
6b 6c  
 
 

Scheme 2.  Diyl (5a) and its monoradical counterpart (6b) 

 

Our preliminary studies focused upon vinylcyclopropane (13).  We assumed that a viable cyclization 

substrate would require a cis stereochemistry about the cyclopropane ring since a trans relationship would 

place the odd electron and the alkene too far apart to allow direct cyclization.  The synthesis of 

vinylcyclopropane (13) is illustrated in Scheme 3.  2-Allylcyclopentanone (7) was cyclopropanated 

using ethyl diazoacetate and a catalytic amount of dirhodium tetraacetate.  The reaction generated a 1:1 

cis/trans mixture of cyclopropyl ester (8).  The mixture of diastereomeric cyclopropyl esters (8) was 

then reduced using lithium aluminum hydride.  Careful chromatography efficiently provided the 

necessary cis-cyclopropane (10).  Cyclopropyl alcohol (10) was subjected to a Parikh-Doering oxidation 

to give 11.5  The cyclopropyl aldehyde (11) was then treated with the stabilized Wittig reagent (12) to 

give the α, β-unsaturated ester (13).  The atom connectivity of 13 was confirmed using a 1H - 1H COSY 

analysis and the stereochemistry was established using nOe analysis.   
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Scheme 3.  Synthesis of Vinylcyclopropane (13) 

 

We elected to use samarium diiodide as the single electron reductant to generate ketyl radical (16) (see 

Figure 1).  Thus, when 13 was added via cannula to a solution of samarium diiodide in THF at 0 oC, 

compound (14), the product of a 6-exo-trig cyclization, was generated in a 40 % isolated yield (65 % 

BORSM, Scheme 4).6  The atom connectivity for 14 was determined using 1H - 1H COSY and 1H - 13C 

HMQC analysis and the stereochemistry was established by using nOe analysis.  Samarium chelation 

can be invoked to explain the stereochemical outcome of the cyclization reaction.  Of course, there are 

many examples of the stereocontrolled synthesis of medium sized rings involving samarium chelates.7 
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Scheme 4.  Cyclization of vinylcyclopropane (13) to give tricyclic 5-6-3 system 
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The observed 6-exo-trig cyclization of 16 is not unanticipated, given that the relative rates of cyclization 

for hydrocarbon radicals has shown that a 7-endo-trig cyclization is 45 times slower than a 6-exo-trig 

cyclization.8  In addition, the 6-exo-trig cyclization of 16 leads to ester stabilized radical (17), while the 

7-endo-trig cyclization pathway leads to 15, a non-stabilized radical (Figure 1).   
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Figure 1.  7-endo-trig pathway vs. 6-exo-trig pathway 

 

We elected to change the position of the electron withdrawing group in an effort to promote the 

7-endo-trig pathway and chose vinylcyclopropane (22) as the substrate of interest.  Its synthesis, 

outlined in Scheme 5, began when ethylene ketal (18) was treated with ethyl diazopyruvate (19) and a 

catalytic amount of dirhodium tetraacetate to give cyclopropane (20) as a mixture of diastereomers.  

Olefination of cyclopropyl ketone (20) proceeded smoothly to give the α, β-unsaturated ester (21).  

Deprotection of cyclopropane (21) using PPTS to give the anticipated ketone also proceeded smoothly.  

Careful chromatography allowed for the separation of the cis/trans cyclopropane isomers.  The atom 

connectivity of 22 was once again established using 1H - 1H COSY analysis and the stereochemistry was 

confirmed by using nOe.     
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Scheme 5.  Synthesis of Vinylcyclopropane (22) 
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Treatment of 22 with samarium diiodide afforded secondary alcohol (23) (Scheme 6), the product of 

reduction without cyclization, with the rest of the mass consisting of starting material.9 The most likely 

source of "H" atom in the reduction is the solvent, THF.  It has been observed that THF complexes with 

Sm(II) and is present when samarium coordinates to the carbonyl prior to reduction (assuming an inner 

sphere process).  The THF is then readily available as a hydrogen atom donor.  Molander has described 

this phenomenon when studying additives such as HMPA in intramolecular SmI2 cyclizations.10 The 

HMPA preferentially complexes with the Sm(II) and THF is excluded from the coordination sphere, 

thereby reducing the likelihood of hydrogen atom abstraction leading to uncyclized product. 
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Scheme 6.  Reduction of (22) to give secondary alcohol (23) 

 

Although we have been unsuccessful in gaining access to eight-membered rings thus far, our efforts 

continue.  One intriguing option is to replace one of the cyclopropyl carbons with an oxygen or a 

nitrogen atom, in an effort to use the chemistry as a route to oxygen and nitrogen containing heterocycles.  

Our continuing studies in this area are underway and the results will be reported in due course. 
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