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Abstract – The thermal reaction of N-benzyl-N-{3-formyl-4-oxo-4H- pyrido[1,2-a]- 

pyrimidin-2-yl}amino esters (1) provides 2-substituted pyrrolo[2.3-d]pyrido[1,2-a]- 

pyrimidin-4(1H)-ones (2) effectively. Therein, the lactonization and consecutive 

decarboxylation of the initially formed methyl 2-substituted 1,2,3,4-dihydro-3- 

hydroxy-4-oxopyrrolo[2.3-d]pyrido[1,2-a]pyrimidine-2-carboxylates (4) is proposed 

for the formation of 2.         

 
Although tricyclic pyrrolo[2,3-d]pyrido[1,2-a]pyrimidine system has been unknown yet, only its analogs, 

2,3-dihydropyrrolo[2,3-d]pyrido[1,2-a]pyrimidin-4(1H)-one, was prepared by a novel cyclization reaction.  In 

a previous paper,1 we reported a stereoselective pyrroline-ring formation through the electrocyclization of 

conjugated azomethine ylides at the periphery of pyrido[1,2-a]pyrimidin-4(1H)-one system; the thermal 

reaction of N-benzyl-N-{3-(N-substituted imino)methyl-4-oxo-4H-pyrido[1,2-a]pyrimidin-2-yl}amino ester, 

obtained from the reaction of aldehyde esters with primary amine, provided 

2,3-dihydropyrrolo[2,3-d]pyrido[1,2-a]pyrimidin-4(1H)-ones effectively and stereoselectively.   Therein, the 

[1,6] shift of the proton on the carbon adjacent to the amino nitrogen generated a conjugated azomethine ylide 

and its successive 1,5-electrocyclic ring-closure was proposed (Scheme 1). 
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Scheme 1.  Reaction modes: 1) 1,6-H shift (8π): antarafacial; 2) 1,5-ring closure (6π): disrotatory 
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To elucidate the scope of the cyclization reaction and apply it to preparing condensed nitrogen-heterocycles, we 
examined the thermal behavior of the starting amino esters.   A solution of amino ester (1a) (R = H) in xylene 
was heated at reflux for 90 h to give two pyrrole derivatives (2a and 3a) in 41% and 29% yield, respectively.2  
The latter (3a) corresponds to the product of Fischer-Fink reaction,3 while the major (2a) would be formed by 
elimination of methanol and carbon dioxide from the initially formed β-hydroxyester (4a) in the Fischer-Fink 
reaction (Scheme 2).  This proposed pathway was supported by the similar reaction of amino ester (1b) (R = 
Ph); a solution of 1b in xylene was refluxed for 70 h gave 2-phenylpyrrolo[2,3-d]pyrido- 
[1,2-a]pyrimidin-4(1H)-one (2b) quantitatively.   In the course of the preparation of 1b, β-hydroxyester (4b)4 
(cis:trans = 2/1 mixture) was obtained as a by-product.  The isolated 4b (cis/trans = 2/1 mixture) was heated in 
DMF at 150 °C for 45 h gave 2b and unreacted 4b (cis/trans = 1/4) in 67% and 20% yield, respectively.   
These findings suggest that thermal reaction of amino ester (1) would give the β-hydroxyester (4) as a mixture 
of cis- and trans-isomer, only cis-4 of which was lactonized and decarboxylated to give the final product, 
pyrrole derivative (2) (Scheme 2).5  
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Scheme 2.  Thermal ring-closure of amino esters (1) to pyrroles (2) 

182 HETEROCYCLES, Vol. 70, 2006



The ester group in 1 is essential for this pyrrole-ring formation; N,N-dibenzylamino (6a) and 1-pyrrolidinyl 
analogs (6b) did not undergo the similar cyclization even at more harsh reaction conditions.  This means that 
in the transformation from 1 to 4 the proton on the carbon adjacent to the amino nitrogen is required to be acidic 
and suggests that, therefore, the reaction process for the transformation does not seem be limited to the1,6-H 
shift and 1,5-electrocyclization one; an aldol type cyclization process could not be ruled out.  On the other 
hand, the thermal cyclization of cyclic amino ester (1c) failed probably due to steric reason. 
Although details on the reaction pathway are still unclear, this thermal cyclization reaction should be a novel, 
facile, and effective preparation method for 2-substituted pyrrolo[2,3-d]pyrido[1,2-a]pyrimidin-4(1H)-one 
derivatives.   So, we examined the similar reaction of other amino esters (1d-j); in every case pyrroles (2d-j) 
were formed in good to excellent yields (Table 1).  Therein, the substituents (R) at the 2-position in the starting 
amino esters (1) were converted to those at the 2-position of pyrroles (2) respectively. 
 

Table 1.  Preparation of pyrrolo[2,3-d]pyrido[1,2-a]pyrimidin-4(1H)-ones (2) form amino esters (1) 
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Entry R Time / h Product / Yield (%)a 

4 PhCH2 65 2d / 69 

5 Me 120 2e / 75 

6 i-Pr 42 2f / 88 

7 n-Pr 90 2g / 90 

8 sec-Bu (S) 72 2h / 86 

9 i-Bu 40 2i / 96 

10 (CH2)2SMe 45 2j / 85 
a Based on isolated products. 
 

In conclusion, we have reported the facile pyrrole-ring formation through the thermal reaction of 
N-benzyl-N-{3-formyl-4-oxo-4H-pyrido[1,2-a]pyrimidin-2-yl}amino esters (1).  This provides an efficient 
approach toward 2-functionalized pyrrolo[2,3-d]pyrido[1,2-a]pyrimidin-4(1H)-ones (2).   Further details on 
the reaction path and investigation on the effect of the heterocyclic system are in progress and will be reported 
elsewhere.  
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