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Abstract – Unstable 3- and 2-aminoindoles are generated in situ by indium 

mediated reduction of 3- and 2-nitroindoles and capped as the stable amides (or 

carbamate) in moderate to high yields under mild conditions in a one-pot 

procedure. 

As a class of indoles, both 3- and 2-aminoindoles are virtually unexplored as novel heterocyclic enamines.  

They could be useful precursors for the other important classes of indoles and novel fused heterocycles.  

1-Methyl-3-aminoindole, generated in situ by deacetylation of 1-methyl-3-acetylaminoindole, has been 

shown to react with 1,3-dicarbonyl compounds in an easy one-pot process to yield δ-carbolines.1  These 

δ-carbolines were subsequently used to synthesize annelated pyridoindole NADH models.  In these 

syntheses, 3-acetylaminoindoles were prepared via the Beckmann rearrangement of the corresponding 

oximes which in turn were made from the 3-acetylindoles.1-2  In fact, efficient synthesis of 

3-aminoindoles are scarce due to their known instability.3  Kurilo and co-workers had reported the 

synthesis of 3-acetylaminoindoles from 2-carbethoxyindoles.  In their synthesis, the diazo coupling of 

2-carbethoxyindoles with benzene diazonium chloride gave 2-carbethoxy-3-phenylazoindoles which were 

treated with Zn and acetic acid in the presence of acetic anhydride to produce 

2-carbethoxy-3-acetamidoindoles.  Basic hydrolysis of 2-carbethoxy-3-acetamidoindoles followed by 

thermal decarboxylation of carboxylic acid gave 3-acetylaminoindoles.3 Recently, an 

N-substituted-3-acetylaminoindole was tested as a potential inhibitor against type 2 diabetes; however, the 

synthesis of 3-acetylaminoindole was not described.4 
 

† Dedicated to Professor Steven M. Weinreb in celebration of his 65th birthday and his many outstanding 

contributions to synthetic organic chemistry. 
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Our research group has long been interested in the synthesis of the 3- and 2-aminoindoles.  Since we 

have already reported several synthesis of 3- and 2-nitroindoles from indole,5,6 the reduction of these 

nitroindoles would be the straightforward way to furnish the corresponding aminoindoles.  In this 

direction, we have made several attempts (H2, 10% Pd-C/ EtOH;7 Na2S2O4;8 In, NH4Cl/EtOH9) to reduce 

nitroindoles to the corresponding amines, but without success.  Due to this lack of success to obtain free 

aminoindoles and because of the known instability of the aminoindoles, we decided to protect the amino 

group of the aminoindoles by acylation in situ as they form in the reaction.  
 
In an initial study, inspired by the reported indium mediated conversion of nitroarenes to 

N-arylacetamides,10 1-methyl-3-nitroindole (1) was treated with indium in the presence of acetic acid and 

acetic anhydride in methanol.  To our delight, the desired acetamide (2) was obtained in excellent yield 

(Scheme 1).11  Compound (2) is stable and can be stored indefinitely, but can be readily converted in 

situ to the 3-aminoindole by methanolic HCl when required for the reaction.1 
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We have chosen to use indium as a reducing agent because it is a non-toxic metal and highly suitable for 

green chemistry processes.  Moreover, it does not readily form oxides when exposed to air and most 

importantly, it is insensitive to moisture which provides greater operational simplicity in the indium 

mediated reaction.12  

 

After this initial success, we subjected different N-protected 3-nitroindoles (3-5) to the same reaction 

conditions (Scheme 2).  To our satisfaction, the corresponding protected amines (9-11) were obtained in 

good to excellent yield from the corresponding 3-nitroindoles (Table 1).13  Also, (NH)-free nitroindole 

(6) furnished the desired product (12) in excellent yield.14  However, lower yields of (13) and (14) were 

obtained from 2-nitroindoles (7) and (8), respectively.15 
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Table 1. Synthesis of acetylaminoindoles (9-14) from nitroindoles (3-8) with In, AcOH, Ac2O. 

Entry Nitroindole R Product Yield 

3 3-NO2 Bn 9 86% 

4 3-NO2 SO2Ph 10 68% 

5 3-NO2 Boc 11 71% 

6 3-NO2 H 12 82% 

7 2-NO2 SO2Ph 13 30% 

8 2-NO2 Boc 14 33% 

 

The required nitroindoles for reduction were prepared from indole by N-protection followed by nitration 

(Scheme 3).16  The parent 3-nitroindole (6) was prepared from 3-nitro-1-(phenylsulfonyl)indole (4) by 

deprotection with 10% ethanolic NaOH solution in 71% yield. 
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ii) for 1, 3-5: AcONO2 (from Ac2O and HNO3); for 7-8: t-BuLi, N2O4.
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Scheme 3.

 
 

Reduction of 1-methyl-3-nitroindole (1) by indium in acetic acid in the presence of Boc-anhydride 

furnished the Boc-protected amine (19) in 66% yield.17  A small amount of compound 2 (16%) was 

obtained as a byproduct in this reaction (Scheme 4).  
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Similarly, in the presence of hexanoic and benzoic anhydrides, 1-methyl-3-nitroindole (1) furnished the 

corresponding amides (20) and (21) (Scheme 5).18  In both cases, N-acetylaminoindole (2) was also 

obtained as a byproduct.  
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Scheme 5. 
 

In conclusion, we have described a method to reduce 3- and 2-nitroindoles to the corresponding 

N-acylated aminoindoles.  The desired products are obtained in moderate to excellent yield.  The 

chemistry involving these aminoindoles is ongoing in our laboratory and will be reported in due course. 
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