HETEROCYCLES, Vol. 71, No. 3, 2007, pp. 577 - 588. © The Japan Institute of Heterocyclic Chemistry Received, 27th November, 2006, Accepted, 22nd January, 2007, Published online, 23rd January, 2007. COM-06-10959

STRUCTURES OF DAMMARANE-TYPE TRITERPENE TRIGLYCOSIDES FROM THE FLOWER BUDS OF *PANAX GINSENG*¹

Seikou Nakamura, Sachiko Sugimoto, Hisashi Matsuda, and Masayuki Yoshikawa*

Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8412, Japan, e-mail address: myoshika@mb.kyoto-phu.ac.jp

Abstract —New dammarane-type triterpene triglycosides, floralginsenosides G, H, I, J, K, La, and Lb, were isolated from the flower buds of *Panax ginseng* C. A. MEYER together with ten known dammarane-type triterpene oligoglycosides. The structures of new compounds were elucidated on the basis of chemical and physicochemical evidence.

During the course of our studies on bioactive constituents of medicinal flowers,^{2,3} we have previously reported the isolation and structure elucidation of six dammarane-type triterpene diglycosides named floralginsenosides A, B, C, D, E, and F with a hydroperoxide group from the flower buds of Panax (P.) ginseng C. A. MEYER (Araliaceae) together with ten known dammarane-type triterpene oligoglycosides.⁴ As a continuing study, we further isolated seven new dammarane-type triterpene triglycosides termed floralginsenosides G (1), H (2), I (3), J (4), K (5), La (6), and Lb (7) from ginseng flower. This paper deals with the isolation and structure elucidation of new dammarane-type triterpene triglycosides (1-7).⁵ The *n*-butanol-soluble portion, which was obtained by *n*-butanol–water partition of the methanolic extract from the flower buds of P. ginseng cultivated in Jilin province of China, was subjected to normal-phase silica gel column chromatography to give nine fractions as shown in the previous paper.⁴ Fractions 3–8 were separated by reversed-phase silica gel column chromatography followed by HPLC to afford floralginsenosides G (1, 0.0028%, from the dried flower buds), H (2, 0.0017%), I (3, 0.0063%), J (4, 0.0047%), K (5, 0.0037%), La (6, 0.0036%), and Lb (7, 0.0016%) together with ginsenoside Re (9,6 2.69%), pseudo-ginsenoside-RS₁ (10,⁶ 0.0036%), vina-ginsenoside-R4 (11,⁷ 0.017%), notoginsenoside-E (12, 8 0.090%), majoroside F₆ (13, 9 0.0032%), ginsenoside I (14, 8 0.057%), ginsenoside Rd (15, 10 1.23%), ginsenoside Rc (16,¹¹ 0.19%), ginsenoside Rb₁ (17,¹² 0.36%), and ginsenoside Rb₂ (18,¹¹ 0.48%).

Structures of Floralginsenosides

Chart 1

Floralginsenosides G (1) and H (2) were isolated as an amorphous powder with positive optical rotation (1: $[\alpha]_D^{22} + 20.3^\circ$; 2: $[\alpha]_D^{26} + 25.5^\circ$ in MeOH). Both compounds (1, 2) were shown to possess a hydroperoxide residue by the positive response to the *N*,*N*-dimethyl-*p*-phenylenediammonium dichloride reagent.^{13,14} The IR spectra of 1 and 2 showed absorption bands (1: 1718, 1655, 1252 cm⁻¹; 2: 1736, 1655, 1252 cm⁻¹) assignable to ester and olefin functions in addition to strong absorption bands (1: 3415, 1078 cm⁻¹; 2: 3415, 1078 cm⁻¹) suggestive of a glycoside structure. The negative-ion FAB-MS spectra of 1 and 2 exhibited a common pseudomolecular ion peak at *m*/*z* 1019 (M-H)⁻ in addition to fragment ion peaks at

m/z 1003 (M-OH)⁻, m/z 977 (M-C₂H₃O)⁻, m/z 961 (M-C₂H₃O₂)⁻, and m/z 839 (M-C₆H₁₁O₅)⁻, while the positive-ion FAB-MS spectra of 1 and 2 showed a common pseudomolecular ion peak at m/z 1043 (M+Na)⁺. High-resolution MS analysis of the pseudomolecular ion peak (M+Na)⁺ revealed the common molecular formula of 1 and 2 to be $C_{50}H_{84}H_{21}$. Acid hydrolysis of 1 and 2 with 1.0 M aqueous hydrochloric acid (HCl) liberated D-glucose, which was identified by HPLC analysis using an optical rotation detector.¹⁵ The ¹H-NMR (pyridine- d_5) and ¹³C-NMR (Table 1) spectra of **1** and **2**, which were assigned by various NMR experiments,¹⁶ showed signals due to an aglycon part [1: δ 0.90, 0.91, 1.03, 1.15, 1.34, 1.58, 1.59, 1.60 (3H each, all s, 30, 19, 18, 29, 28, 26, 27, 21-H₃), 3.29 (1H, dd, J=4.3, 11.7 Hz, 3-H), 4.00 (1H, m, 12-H), 6.03 (1H, d, J=15.9 Hz, 24-H), 6.20 (1H, ddd, J=6.2, 8.6, 15.9 Hz, 23-H); 2: δ 0.87, 0.94, 0.99, 1.13, 1.35, 1.61, 1.92 (3H each, all s, 19, 30, 18, 29, 28, 21, 27-H₃), 3.28 (1H, dd, *J*=4.3, 11.7 Hz, 3-H), 4.10 (1H, m, 12-H), 4.74 (1H, dd-like, J=ca. 5, 8 Hz, 24-H), 5.07, 5.23 (each 1H, both br s, 26-H₂)], an acetyl group [1: δ 2.05 (3H, s), 4.78 (1H, dd, *J*=4.9, 11.7 Hz), 4.93 (1H, dd, *J*=2.2, 11.7 Hz) (6"-H₂); **2**: δ 2.04 (3H, s), 4.77 (1H, dd, *J*=4.9, 11.9 Hz), 4.92 (1H, br d, *J*=*ca*. 12 Hz) (6"-H₂)], and three β -D-glucopyranosyl moieties [1: δ 4.90 (1H, d, J=7.6 Hz, 1'-H), 5.30 (1H, d, J=7.6 Hz, 1"-H), 5.20 (1H, d, J=7.6 Hz, 1'"-H); 2: δ 4.89 (1H, d, J=7.8 Hz, 1'-H), 5.29 (1H, d, J=7.8 Hz, 1"-H), 5.15 (1H, d, J=8.1 Hz, 1["]-H)]. The proton and carbon signals in the ¹H- and ¹³C-NMR spectra of 1 and 2 were superimposable on those of notoginsenoside-E $(12)^8$ and ginsenoside I $(14)^8$ respectively, expect for the signals due to the 6"-acetyl group of the terminal glucopyranosyl moiety. The position of the acetyl group in 1 and 2 was clarified by a HMBC experiment, which showed long-range correlation between the 6"proton and acetyl carbonyl carbon. Furthermore, respective comparison of the ¹³C-NMR data of 1 and 2 with those of 12 and 14 indicated the presence of an acetylation shift at the 6"-position of 1 and 2. Finally, alkaline hydrolysis of 1 and 2 with 5% aqueous KOH-50% aqueous 1,4-dioxane (1:1) yielded 12 and 14, respectively. On the basis of this evidence and detail examination of ¹H-¹H COSY and HMBC experiments (Figure 1), the structures of floral ginsenosides G (1) and H (2)¹⁷ were determined as shown. Floralginsenosides I (3) and J (4) were also isolated as an amorphous powder with negative and positive optical rotation (3: $[\alpha]_D^{24}$ -4.7°; 4: $[\alpha]_D^{26}$ +2.8° in MeOH) and showed positive response to the N,Ndimethyl-*p*-phenylenediammonium dichloride reagent.^{13,14} The IR spectra of **3** and **4** showed absorption bands assignable to hydroxyl and olefin functions (3: 3547, 1655 cm⁻¹; 4: 3433, 1655 cm⁻¹). The common molecular formula $C_{48}H_{82}O_{20}$ of **3** and **4** were determined from the quasimolecular ion peaks [*m*/*z* 977 (M-H)⁻ and m/z 1001 (M+Na)⁺] in the negative-ion and positive-ion FAB-MS and by high-resolution MS measurement. Their negative-ion FAB-MS spectrum showed fragment ion peaks at m/z 961 (M-OH)⁻ and m/z 797 (M-OH-C₆H₁₁O₅)⁻. The acid hydrolysis of **3** and **4** liberated D-glucose and L-rhamnose, which were identified by HPLC analysis using an optical rotation detection.¹⁵ The ¹H-NMR (pyridine- d_5) and ¹³C-NMR (Table 1) spectra¹⁶ of **3** and **4** showed signals due to an aglycon part [**3**: δ 0.91, 1.05, 1.25, 1.38, 1.55, 1.58, 1.59, 2.08 (3H each, all s, 30, 19, 18, 29, 21, 26, 27, 28-H₃), 3.46 (1H, dd, J=4.9, 11.7 Hz, 3-H), 3.96 (1H, m, 12-H), 4.96 (1H, br dd, J=ca. 4, 11 Hz, 6-H), 6.07 (1H, d, J=15.8 Hz, 24-H), 6.22 (1H, ddd, J=6.6, 8.1, 15.8 Hz, 23-H); 4: δ 0.79 1.00, 1.17, 1.35, 1.58, 1.86, 2.07 (3H each, all s, 30, 19, 18, 29, 21, 27, 28-H₃), 3.45 (1H, dd, J=4.9, 11.5 Hz, 3-H), 4.08 (1H, m, 12-H), 4.32 (1H, m, 6-H), 4.69 (1H, ddlike, J=ca. 5, 8 Hz, 24-H), 5.01, 5.20 (each 1H, both br s, 26-H₂)], two β -D-glucopyranosyl moieties [3: δ

5.25 (1H, d, J=6.9 Hz, 1'-H), 5.18 (1H, d, J=7.8 Hz, 1'"-H); 4: δ 5.24 (1H, d-like, J=ca. 7 Hz, 1'-H), 5.18 (1H, d, J=7.8 Hz, 1"-H)], and an α -L-rhamnopyranosyl moiety [3: δ 6.44 (1H, br s, 1"-H); 4: δ 6.42 (1H, br s, 1"-H)]. The proton and carbon signals due to the tetracarbocyclic moieties (1-C-20-C, 28-C-30-C) including the 6- and 20-O-glycosidic parts in the ¹H- and ¹³C-NMR spectra of 3 and 4 were superimposable on those of ginsenoside Re^6 , whereas the signals due to the side chain parts (20-C-27-C) of 3 and 4 were similar to those of 1 and 2, respectively. As shown in Figure 1, the structures of 3 and 4 were clarified by means of ¹H-¹H COSY and HMBC experiments. Namely, the ¹H-¹H COSY experiments on 3 and 4 indicated the presence of partial structures written in bold lines and the connectivities of the quaternary carbon and positions of the glycoside linkages in 3 and 4 were elucidated by HMBC experiment, which showed long-range correlations between the following protons and carbons; 3, 4: 5-H and 6-C; 6-H and 6-C; 11-H and 12-C; 13-H and 13-C; 18-H and 7, 8, 14-C; 19-H and 5, 10-C; 28-H and 3, 4, 5, 29-C; 29-H and 3, 4, 5, 28-C; 30-H and 8, 13, 14-C; 1'-H and 6-C; 1"-H and 2'-C; 1"'-H and 20-C; 3: 22-H and 20-C; 24-H and 22, 26, 27-C; 26-H and 24, 25, 27-C; 27-H and 24, 25, 26-C; 4: 26-H and 24, 27-C; 27-H and 24, 25, 26-C. Treatment of 4 with pyridine yielded the enone derivative (8), whose molecular formula $C_{48}H_{80}O_{19}$ was determined from the negative-ion and positive-ion FAB-MS [m/z 959 $(M-H)^{-}$, m/z 983 $(M+Na)^{+}$ and by high-resolution MS measurement. Although the proton and carbon signals due to the tetracarbocyclic part including the 6- and 20-glycoside moieties in the ¹H- and ¹³C-NMR (Table 1) spectra¹⁶ of **8** was superimposable on those of **4**, while the signals due to the side chain part of **8** resembled those of notoginsenoside- B^{18} and vina-ginsenoside R_{25} .¹⁹ On the basis of those findings and the alkaline degradation mechanisms of the hydroperoxide group,²⁰ the structure of $\mathbf{8}$ was clarified. Consequently, the structures of floral ginsenosides I (3) and J $(4)^{17}$ were characterized as shown. Floralginsenoside K (5), obtained as an amorphous powder with positive optical rotation ($[\alpha]_{D}^{26} + 13.5^{\circ}$ in MeOH), showed the positive response to the N,N-dimethyl-p-phenylenediammonium dichloride reagent.^{13,14} In the IR spectrum of **5**, absorption bands were observed at 3433 and 1655 cm⁻¹ assignable to hydroxyl and olefin functions. The molecular formula $C_{48}H_{82}O_{21}$ was determined from the pseudo molecular ion peaks $[m/z 993 (M-H)^{-}$ and $m/z 1017 (M+Na)^{+}]$ in the negative-ion and positive-ion FAB-MS and by high-resolution MS measurement. The acid hydrolysis of 5 liberated D-glucose.¹⁵ The ¹H-NMR (pyridine- d_5) and ¹³C-NMR (Table 1) spectra¹⁶ of **5** showed signals due to an aglycon part [δ 0.94, 0.99, 1.13, 1.52, 1.57, 1.58, 1.59, 2.00 (3H each, all s, 19, 30, 18, 29, 27, 26, 21, 28-H₃), 3.38 (1H, dd, J=4.6, 11.6 Hz, 3-H), 4.00 (1H, m, 12-H), 4.33 (1H, m, 6-H), 6.03 (1H, d, J=16.0 Hz, 24-H), 6.21 (1H, ddd, J=6.5, 8.1, 15.5 Hz, 23-H)] together with three β -D-glucopyranosyl moieties [δ 4.96 (1H, d, J=7.4) Hz, 1'-H), 5.20 (1H, d, J=7.7 Hz, 1"'-H), 5.38 (1H, d, J=7.6 Hz, 1"-H)]. The proton and carbon signals due to the tetracarbocyclic part in the ¹H- and ¹³C-NMR spectra of 5 were similar to those of vinaginsenoside-R4,⁷ whereas the signals due to the side chain part resembled those of 1 and 3. The ¹H-¹H COSY experiment on 5 indicated the presence of partial structures written in bold lines and the HMBC experiment showed long-range correlations as shown in Figure 1. This evidence led us to formulate the structure of floralginsenoside K (5) as shown.

Floralginsenosides La (6) and Lb (7), obtained as an amorphous powder (6: $[\alpha]_D^{27} + 2.3^\circ$; 7: $[\alpha]_D^{26} - 7.5^\circ$ in MeOH), showed absorption bands due to hydroxyl and olefin function in the IR spectra (6: 3415 and

1655 cm⁻¹; 7: 3451 and 1655 cm⁻¹). The common molecular formula $C_{48}H_{82}O_{19}$ was determined from the negative-ion and positive-ion FAB-MS data $[m/z 961 (M-H)^{-1} \text{ and } m/z 985 (M+Na)^{+1}]$ and by highresolution MS measurement. The acid hydrolysis of 6 and 7 liberated D-glucose and L-rhamnose.¹⁵ The ¹H-NMR (pyridine- d_5) and ¹³C-NMR (Table 1) spectra¹⁶ of **6** and **7** showed signals due to an aglycon part [6: δ 0.94, 0.97, 1.18, 1.35, 1.58, 1.88, 2.06 (3H each, all s, 30, 19, 18, 29, 21, 27, 28-H₃), 3.44 (1H, dd, J=4.6, 11.5 Hz, 3-H), 4.08 (1H, m, 12-H), 4.40 (1H, m, 24-H), 4.66 (1H, dd, J=3.2, 10.4 Hz, 6-H), 4.89, 5.25 (each 1H, both br s, 26-H₂); 7: δ 0.83, 0.90, 1.11, 1.30, 1.50, 1.88, 2.05 (3H each, all s, 30, 19, 18, 29, 21, 27, 28-H₃), 3.39 (1H, dd, J=4.9, 11.7 Hz, 3-H), 3.92 (1H, m, 12-H), 4.32 (1H, m, 24-H), 4.62 (1H, dd, J=3.4, 10.4 Hz, 6-H), 4.86, 5.22 (each 1H, both s, 26-H₂)] together with two β -D-glucopyranosyl moieties [6: δ 5.16 (1H, d, J=7.8 Hz, 1"'-H), 5.22 (1H, d, J=6.6 Hz, 1'-H); 7: δ 5.15 (1H, d, J=7.6 Hz, 1"'-H), 5.20 (1H, d, J=6.9 Hz, 1'-H)] and an α -L-rhamnopyranosyl moiety [6: δ 6.41 (1H, s, 1"-H); 7: δ 6.40 (1H, s, 1"-H)]. The proton and carbon signals due to the tetracarbocyclic moiety including the 6- and 20-Oglucoside parts in the ¹H- and ¹³C-NMR spectra of 6 and 7 were similar to those of 3, 4, and 8, while the signals due to the side chain parts of **6** and **7** were superimposable on those of majoroside $F_1 (24R)^{21}$ and majoroside F₂ (24S),²¹ respectively.²² On the basis of this evidence and the ¹H-¹H COSY and HMBC experiments (Figure 1), 6 and 7 were found to be stereoisomeric at the 24-position with each other. Finally, reduction of the enone 8 with sodium borohydride (NaBH₄) provided 6 and 7 in a 2:1 ratio. Consequently, the structures of floral ginsenosides La $(6)^{17}$ and Lb $(7)^{17}$ were elucidated to be as shown.

Figure 1. Significant ¹H-¹H COSY and HMBC Correlations for Floralginsenosides (1—7)

	1	2	3	4	5	6	7	8		1	2	3	4	5	6	7	8
C-1	39.3	39.3	39.5	39.5	39.3	39.5	39.2	39.2	C-1'	105.0	104.9	101.8	101.8	105.3	101.8	101.7	101.7
C-2	26.9	26.4	27.8	27.8	26.8	27.8	27.6	27.5	C-2'	84.3	84.3	79.6	79.4	83.6	79.3	79.3	79.2
C-3	89.3	89.3	78.8	78.8	90.0	78.5	78.2	78.4	C-3'	78.1	78.1	78.0	78.2	78.1	78.8	78.6	78.3
C-4	39.9	39.8	40.3	40.0	40.7	40.0	39.8	39.8	C-4'	71.6	71.8	72.9	72.8	72.0	72.7	72.4	72.4
C-5	56.6	56.6	60.9	61.0	61.9	60.9	60.7	60.6	C-5'	78.0	78.0	78.2	78.3	78.5	78.2	78.4	78.1
C-6	18.6	18.6	74.7	74.8	67.6	74.7	74.4	74.3	C-6'	63.0	63.0	63.1	63.3	63.0	63.2	62.9	62.7
C-7	35.2	35.2	46.0	45.9	47.6	45.9	45.8	45.8	C-1''	106.2	106.1	101.9	101.9	106.1	101.8	101.8	101.7
C-8	40.2	40.1	41.3	41.3	41.3	41.2	41.0	41.0	C-2''	76.8	76.8	72.4	72.5	77.0	72.3	72.3	72.1
C-9	50.2	50.3	49.7	49.6	49.8	49.6	49.3	49.4	C-3''	78.9	79.1	72.3	72.4	78.1	72.3	72.1	72.2
C-10	37.1	37.0	39.8	39.8	38.9	39.7	39.5	39.5	C-4''	71.2	71.1	74.2	74.3	71.8	74.2	74.0	74.0
C-11	31.1	30.9	31.1	31.2	31.1	31.1	30.9	30.7	C-5''	75.5	75.5	69.5	69.5	78.2	69.5	69.3	69.3
C-12	70.5	70.3	70.3	70.4	70.5	70.4	70.1	70.1	C-6''	64.8	64.8	18.7	18.8	63.1	18.7	18.6	18.6
C-13	49.7	49.7	49.0	49.3	49.4	49.0	48.8	48.9	C-1'''	98.4	98.3	98.1	98.4	98.4	98.3	98.2	97.9
C-14	51.6	51.5	51.6	51.6	51.5	51.5	51.3	51.3	C-2'''	75.3	75.2	75.2	75.4	75.3	75.2	75.2	74.9
C-15	30.7	31.2	30.7	30.8	30.7	30.7	30.7	30.6	C-3'''	78.2	78.2	79.4	78.8	78.9	79.0	78.7	79.1
C-16	26.5	26.8	26.8	26.6	26.5	26.7	26.7	26.4	C-4'''	71.8	71.6	71.7	71.8	71.8	71.7	71.5	71.4
C-17	52.3	51.9	52.2	52.3	52.3	52.1	52.2	52.0	C-5'''	78.6	78.6	78.5	78.5	78.1	78.2	78.2	78.1
C-18	16.1	16.0	17.3	17.4	17.6	17.3	17.0	17.0	C-6'''	63.1	63.1	63.1	63.1	63.0	63.1	63.1	62.8
C-19	17.2	16.3	17.3	17.6	17.3	17.5	17.4	17.1	$\underline{C}H_3CO$	20.9	20.9						
C-20	83.2	83.2	83.2	83.1	83.2	83.5	83.0	82.9	$CH_3\underline{C}O$	171.0	171.0						
C-21	23.3	22.6	22.6	23.3	23.3	22.8	22.6	21.8									
C-22	39.9	32.9	32.9	39.5	39.8	32.4	32.5	32.6									
C-23	126.7	22.6	26.7	126.7	126.6	30.3	30.9	29.8									
C-24	138.1	90.0	90.0	138.2	138.1	75.7	76.1	202.3									
C-25	81.3	145.9	146.1	81.4	81.3	*	*	144.2									
C-26	25.3	113.5	113.2	25.3	25.4	109.9	110.1	123.7									
C-27	25.5	17.6	17.8	25.5	25.3	18.5	18.2	17.6									
C-28	28.1	28.1	32.2	32.2	31.5	32.2	32.0	32.0									
C-29	16.5	16.5	17.6	17.6	16.8	17.5	17.5	17.3									
C-30	16.4	17.4	17.1	17.2	17.4	17.3	16.6	17.5									

Table 1. ¹³C-NMR Data for Floralginsenosides G (1), H (2), I (3), J (4), K (5), La (6), and Lb (7) and 8.

Measured in pyridine-*d*₅ at 125 MHz, and 150 MHz.

*: overlapped in solvent

EXPERIMENTAL

The following instruments were used to obtain physical data: specific rotations, Horiba SEPA-300 digital polarimeter (l = 5 cm); IR spectra, Shimadzu FTIR-8100 spectrometer; FAB-MS and high-resolution MS, JEOL JMS-SX 102A mass spectrometer; ¹H-NMR spectra, JEOL EX-270 (270 MHz), JNM-LA500 (500 MHz), and JEOL ECA-600K (600 MHz) spectrometers; ¹³C-NMR spectra, JEOL EX-270 (68 MHz) JNM-LA500 (125 MHz), and JEOL ECA-600K (150 MHz) spectrometers with tetramethylsilane as an internal standard; and HPLC detector, Shimadzu RID-6A refractive index and SPD-10A*vp* UV-VIS detectors. HPLC column, COSMOSIL-5C₁₈-MS-II (250 × 4.6 mm i.d.) and (250 × 20 mm i.d.) columns were used for analytical and preparative purposes, respectively.

The following experimental conditions were used for chromatography: ordinary-phase silica gel column chromatography, Silica gel BW-200 (Fuji Silysia Chemical, Ltd., 150–350 mesh); reverse-phase silica gel column chromatography, Chromatorex ODS DM1020T (Fuji Silysia Chemical, Ltd., 100–200 mesh); TLC, precoated TLC plates with Silica gel $60F_{254}$ (Merck, 0.25 mm) (ordinary phase) and Silica gel RP-18 F_{254S} (Merck, 0.25 mm) (reverse phase); reversed-phase HPTLC, precoated TLC plates with Silica gel RP-18 WF_{254S} (Merck, 0.25 mm); and detection was achieved by spraying with 1% Ce(SO₄)₂–10% aqueous H₂SO₄ followed by heating.

Isolation of Floralginsenosides (1–7)

The dried flower buds of *Panax ginseng* (1.0 kg), which was cultivated in Jilin province of China at 2004 and presented from Koshiro Co. Ltd. (Osaka), were finely cut and extracted four times with methanol under reflux for 3 h. Evaporation of the solvent under reduced pressure provided the methanolic extract (386 g, 38.6%). The methanolic extract (370 g) was partitioned in an EtOAc–H₂O (1:1, v/v) mixture, and the aqueous phase was further extracted with *n*-BuOH. Removal of the solvent from the EtOAc-soluble, *n*-BuOH-soluble, and H₂O-soluble fractions under reduced pressure yielded 43.3 g (4.3%), 216.7 g (21.7%), and 107.1 g (12.0%) of the residue, respectively.

Normal-phase silica gel column chromatography [3.0 kg, $CHCl_3$ –MeOH–H₂O (50:10:1–35:10:1–7:3:1 lower layer–6:4:1, v/v/v)–MeOH] of the *n*-BuOH-soluble fraction (134.0 g) gave nine fractions [Fr. 1 (0.3 g), 2 (1.1 g), 3 (13.5 g), 4 (13.6 g), 5 (55.0 g), 6 (15.9 g), 7 (12.1 g), 8 (5.9 g), 9 (4.3 g)]. Fraction 3 (13.5 g) was separated by reversed-phase silica gel column chromatography [400 g, MeOH–H₂O (20:80–30:70–40:60–50:50–60:40–70:30, v/v)–MeOH] to furnish fourteen fractions [Fr. 3-1 (0.86 g), Fr. 3-2 (0.23 g), Fr. 3-3 (0.18 g), Fr. 3-4 (0.96 g), Fr. 3-5 (0.56 g), Fr. 3-6 (3.74 g), Fr. 3-7 (0.18 g), Fr. 3-8 (0.09 g), Fr. 3-9 (0.05 g), Fr. 3-10 (2.91 g), Fr. 3-11 (0.28 g), Fr. 3-12 (0.15 g), Fr. 3-13 (0.55 g), Fr. 3-14 (2.00 g)]. Fraction 3-11 (0.28 g) was purified by prep. HPLC [MeOH–H₂O (65:35, v/v)] to give fraction 3-11-5 (0.02 g), and floralginsenoside G (1, 11 mg, 0.0017%). Fraction 3-11-5 (0.02 g) was further separated by prep. HPLC [MeOH–H₂O (65:35, v/v)] to give 2 (11 mg, 0.0016%). Fraction 4 (13.6 g) was separated by reversed-phase silica gel column chromatography [400 g, MeOH–H₂O (30:70–40:60–50:50–60:40–70:30–80:20–90:10, v/v)–MeOH] to furnish ten fractions [Fr. 4-

1 (0.34 g), Fr. 4-2 (0.42 g), Fr. 4-3 (0.31 g), Fr. 4-4 (0.16 g), Fr. 4-5 (1.16 g), Fr. 4-6 (0.08 g), Fr. 4-7 (0.19 g), Fr. 4-8 (1.63 g), Fr. 4-9 (0.58 g), Fr. 4-10 (6.61 g)]. Fraction 4-4 (0.31 g) was purified by prep. HPLC [MeOH-H₂O (40:60, v/v)] to give floral ginsenosides I (3, 13 mg, 0.0020%), and J (4, 17 mg, 0.0024%). Fraction 4-5 (0.23 g) was purified by prep. HPLC [MeOH-H₂O (55:45, v/v)] to give ginsenoside Re (9, 56 mg, 0.041 %). Fraction 4-7 (0.19 g) was purified by prep. HPLC [MeOH-H₂O (60:40, v/v)] to give pseudo-ginsenoside-RS₁ (10, 25 mg, 0.0036%). Fraction 4-8 (0.19 g) was separated by prep. HPLC [MeOH–H₂O (65:35, v/v)] to give notoginsenoside-E (12, 32 mg, 0.039%), ginsenoside I (14, 9 mg, 0.010%). Fraction 4-9 (0.14 g) was purified by prep. HPLC [MeOH-H₂O (65:35, v/v)] to give 12 (26 mg, 0.0016%), 14 (13 mg, 0.0081%). Fraction 4-10 (0.20 g) was purified by prep. HPLC [MeOH–H₂O (75:25, v/v)] to give ginsenoside Rd (15, 115 mg, 0.57%). Fraction 5 (55.0 g) was separated chromatography by reversed-phase silica gel column [400 MeOH-H₂O g, (40:60-50:50-60:40-70:30-80:20-90:10, v/v)-MeOH] to furnish ten fractions [Fr. 5-1 (5.30 g), Fr. 5-2 (3.31 g), Fr. 5-3 (1.15 g), Fr. 5-4 (32.3 g), Fr. 5-5 (0.38 g), Fr. 5-6 (0.68 g), Fr. 5-7 (1.10 g), Fr. 5-8 (0.17 g), Fr. 5-9 (0.71 g), Fr. 5-10 (10.7 g)]. Fraction 5-3 (0.13 g) was purified by prep. HPLC [MeOH-H₂O (50:50, v/v)] to give 9 (84 mg, 0.10%). Fraction 5-4 (0.10 g) was purified by prep. HPLC [MeOH-H₂O (50:50, v/v)] to give 9 (53 mg, 2.4%). Fraction 5-5 (0.17 g) was purified by prep. HPLC [MeOH-H₂O (60:40, v/v)] to give floralginsenoside K (5, 11 mg, 0.0037%), 9 (13 mg, 0.0043 %), and vinaginsenoside-R4 (11, 48 mg, 0.017%). Fraction 5-6 (0.16 g) was separated by prep. HPLC [MeOH-H₂O (60:40, v/v)] to give 12 (48 mg, 0.029%), and 14 (20 mg, 0.012%). Fraction 5-7 (0.13 g) was purified by prep. HPLC [MeOH–H₂O (65:35, v/v)] to give 14 (19 mg, 0.024%). Fraction 5-8 (0.17 g) was purified by prep. HPLC [MeOH-H₂O (70:30, v/v)] to give 12 (35 mg, 0.0051%), 14 (14 mg, 0.0020%) and ginsenoside Rc (16, 19 mg, 0.0028%). Fraction 5-9 (0.15 g) was purified by prep. HPLC [MeOH-H₂O (75:25, v/v)] to give **16** (65 mg, 0.045%), ginsenoside Rb₂ (**18**, 27 mg, 0.019%), and **15** (15 mg, 0.010%). Fraction 6 (15.9 g) was separated by reversed-phase silica gel column chromatography [500 g, MeOH-H₂O (40:60-50:50-60:40-70:30-80:20-90:10, v/v)-MeOH] to furnish twelve fractions [Fr. 6-1 (0.08 g), Fr. 6-2 (1.14 g), Fr. 6-3 (0.14 g), Fr. 6-4 (0.65 g), Fr. 6-5 (0.39 g), Fr. 6-6 (0.20 g), Fr. 6-7 (0.67 g), Fr. 6-8 (1.42 g), Fr. 6-9 (0.49 g), Fr. 6-10 (9.90 g), Fr. 6-11 (1.63 g), Fr. 6-12 (0.68 g)]. Fraction 6-5 (0.39 g) was purified by prep. HPLC [MeOH-H₂O (40:60, v/v)] to give **3** (15 mg, 0.0022%). Fraction 6-7 (0.17 g) was purified by prep. HPLC [MeOH-H₂O (55:45, v/v)] to give 9 (58 mg, 0.0033 %). Fraction 6-10 (0.47 g) was purified by prep. HPLC [MeOH-H₂O (75:25, v/v)] to give Fr. 6-10-1 (0.11 g), and **18** (84 mg, 0.26%). Fraction 6-10-1 was further separated by prep. HPLC [MeCN-H₂O (33:67, v/v)] to give ginsenosides Rb₁ (17, 19 mg, 0.060%), 16 (49 mg, 0.15%) and 18 (23 mg, 0.070%). Fraction 6-11 (0.32 g) was purified by prep. HPLC [MeOH-H₂O (75:25, v/v)] to give Ft. 6-11-1 (93 mg), and 15 (32 mg, 0.049%). Fraction 6-11-1 (0.09 g) was separated by prep. HPLC [MeCN-H₂O (33:67, v/v)] to give 18 (55 mg, 0.085%). Fraction 7 (12.1 g) was separated by reversed-phase silica gel column chromatography [400 g, MeOH-H₂O (40:60-50:50-60:40-70:30, v/v)-MeOH] to furnish twelve fractions [Fr. 7-1 (0.70 g), Fr. 7-2 (0.12 g), Fr. 7-3 (0.17 g), Fr. 7-4 (0.19 g), Fr. 7-5 (0.19 g), Fr. 7-6 (0.60 g), Fr. 7-7 (1.14 g), Fr. 7-8 (0.53 g), Fr. 7-9 (1.43 g), Fr. 7-10 (5.15 g), Fr. 7-11 (0.19 g), Fr. 7-12 (0.48 g)]. Fraction 7-3 (0.17 g) was purified by prep. HPLC [MeCN-H₂O (1:5, v/v)] to give floralginsenosides La (6, 26 mg, 0.0038%), 4 (16 mg, 0.0023%) and Lb (7, 10 mg, 0.0016%). Fraction 7-4 (0.19 g) was purified by prep. HPLC [MeCN–H₂O (1:5, v/v)] to give majoroside F_6 (13, 22 mg, 0.0032%), and 3 (15 mg, 0.0021%). Fraction 7-9 (0.35 g) was purified by prep. HPLC [MeCN–H₂O (33:67, v/v)] to give 17 (221 mg, 0.30%), and 18 (49 mg, 0.067%). Fraction 7-11 (0.19 g) was purified by prep. HPLC [MeOH–H₂O (80:20, v/v)] to give 15 (33 mg, 0.0048%). Fraction 8 (5.9 g) was separated by reversed-phase silica gel column chromatography [400 g, MeOH–H₂O (20:80–30:70–40:60–50:50–60:40–70:30, v/v)–MeOH] to furnish twelve fractions [Fr. 8-1 (0.99 g), Fr. 8-2 (0.19 g), Fr. 8-3 (0.04 g), Fr. 8-4 (0.04 g), Fr. 8-5 (0.11 g), Fr. 8-6 (0.02 g), Fr. 8-7 (0.03 g), Fr. 8-8 (0.11 g), Fr. 8-9 (0.92 g), Fr. 8-10 (0.67 g), Fr. 8-11 (0.64 g), Fr. 8-12 (1.10 g)]. Fraction 8-10 (0.17 g) was purified by prep. HPLC [MeOH–H₂O (50:50, v/v)] to give 9 (54 mg, 0.029%).

Floralginsenoside G (1): a white amorphous powder, $[\alpha]_D^{22}$ +20.3° (*c*=0.14, MeOH). High-resolution positive-ion FAB-MS: Calcd for C₅₀H₈₄O₂₁Na (M+Na)⁺: 1043.5403. Found: 1043.5406. IR (KBr) 3415, 2941, 1718, 1655, 1252, 1078 cm⁻¹. ¹H-NMR (pyridine-*d*₅, 600 MHz) δ 0.90, 0.91, 1.03, 1.15, 1.34, 1.58, 1.59, 1.60 (3H each, all s, 30, 19, 18, 29, 28, 26, 27, 21-H₃), 3.29 (1H, dd, *J*=4.3, 11.7 Hz, 3-H), 4.00 (1H, m, 12-H), 4.90 (1H, d, *J*=7.6 Hz, 1'-H), 5.20 (1H, d, *J*=7.6 Hz, 1"'-H), 5.30 (1H, d, *J*=7.6 Hz, 1"-H), 6.03 (1H, d, *J*=15.9 Hz, 24-H), 6.20 (1H, ddd, *J*=6.2, 8.6, 15.9 Hz, 23-H). ¹³C-NMR (pyridine-*d*₅, 150 MHz) δ c: give in Table 1. Positive-ion FAB-MS *m*/*z* 1043 (M+Na)⁺. Negative-ion FAB-MS *m*/*z* 1019 (M-H)⁻, 1003 (M-OH)⁻, 977 (M-C₂H₃O)⁻, 961 (M-C₂H₃O₂)⁻, 839 (M-OH-C₆H₁₁O₅)⁻.

Floralginsenoside H (2): a white amorphous powder, $[\alpha]_D^{26} + 25.5^{\circ}$ (*c*=0.52, MeOH). High-resolution positive-ion FAB-MS: Calcd for C₅₀H₈₄O₂₁Na (M+Na)⁺: 1043.5403. Found: 1043.5406. IR (KBr) 3415, 2945, 1736, 1655, 1252, 1078 cm⁻¹. ¹H-NMR (pyridine-*d*₅, 500 MHz) δ 0.87, 0.94, 0.99, 1.13, 1.35, 1.61, 1.92 (3H each, all s, 19, 30, 18, 29, 28, 21, 27-H₃), 3.28 (1H, dd, *J*=4.3, 11.7 Hz, 3-H), 4.10 (1H, m, 12-H), 4.74 (1H, dd-like, *J*=*ca*. 5, 8 Hz, 24-H), 4.89 (1H, d, *J*=7.8 Hz, 1'-H), 5.15 (1H, d, *J*=8.1 Hz, 1'''-H), 5.07, 5.23 (each 1H, both br s, 26-H₂), 5.29 (1H, d, *J*=7.8 Hz, 1-H''). ¹³C-NMR (pyridine-*d*₅, 125 MHz) δ c: give in Table 1. Positive-ion FAB-MS *m*/*z* 1043 (M+Na)⁺. Negative-ion FAB-MS *m*/*z* 1019 (M-H)⁻, 1003 (M-OH)⁻, 977 (M-C₂H₃O)⁻, 961 (M-C₂H₃O₂)⁻, 839 (M-OH-C₆H₁₁O₅).

Floralginsenoside I (**3**): a white amorphous powder, $[\alpha]_{D}^{24}$ +4.7° (*c*=0.55, MeOH). High-resolution positive-ion FAB-MS: Calcd for C₄₈H₈₂O₂₀Na (M+Na)⁺: 1001.5297. Found: 1001.5305. IR (KBr) 3547, 2961, 1655, 1076 cm⁻¹. ¹H-NMR (pyridine-*d*₅, 500 MHz) δ 0.91, 1.05, 1.25, 1.38, 1.55, 1.58, 1.59, 2.08 (3H each, all s, 30, 19, 18, 29, 21, 26, 27, 28-H₃), 3.46 (1H, dd, *J*=4.9, 11.7 Hz, 3-H), 3.96 (1H, m, 12-H), 4.96 (1H, br dd, *J*=*ca*. 4, 11 Hz, 6-H), 5.18 (1H, d, *J*=7.8 Hz, 1^{***}-H), 5.25 (1H, d, *J*=6.9, 1'-H), 6.07 (1H, d, *J*=15.8 Hz, 24-H), 6.22 (1H, ddd, *J*=6.6, 8.1, 15.8 Hz, 23-H), 6.44 (1H, s, 1"-H). ¹³C-NMR (pyridine-*d*₅, 125 MHz) δ c: give in Table 1. Positive-ion FAB-MS *m*/*z* 1001 (M+Na)⁺. Negative-ion FAB-MS *m*/*z* 977 (M-OH-C₆H₁₁O₅)⁻.

Floralginsenoside J (4): a white amorphous powder, $[\alpha]_{D}^{26}$ -2.8° (*c*=0.63, MeOH). High-resolution positive-ion FAB-MS: Calcd for C₄₈H₈₂O₂₀Na (M+Na)⁺: 1001.5297. Found: 1001.5294. IR (KBr) 3433, 2934, 1655, 1076 cm⁻¹. ¹H-NMR (pyridine-*d*₅, 500 MHz) δ 0.79 1.00, 1.17, 1.35, 1.58, 1.86, 2.07 (3H each, all s, 30, 19, 18, 29, 21, 27, 28-H₃), 3.45 (1H, dd, *J*=4.9, 11.5 Hz, 3-H), 4.08 (1H, m, 12-H), 4.32

(1H, m, 6-H), 4.69 (1H, dd-like, *J*=*ca*. 5, 8 Hz, 24-H), 5.01, 5.20 (each 1H, both br s, 26-H₂), 5.18 (1H, d, *J*=7.8 Hz, 1"'-H), 5.24 (1H, dd-like, *J*=*ca*. 7 Hz, 1'-H), 6.42 (1H, br s, 1"'-H); ¹³C-NMR (pyridine- d_5 , 125 MHz) δc : give in Table 1. Positive-ion FAB-MS m/z 1001 (M+Na)⁺. Negative-ion FAB-MS m/z 977 (M-H)⁻, 961 (M-OH)⁻, 781 (M-OOH-C₆H₁₁O₅)⁻.

Floralginsenoside K (**5**): a white amorphous powder, $[\alpha]_{D}^{26}$ +13.5° (*c*=0.58, MeOH). High-resolution positive-ion FAB-MS: Calcd for C₄₈H₈₂O₂₁Na (M+Na)⁺: 1017.5246. Found: 1017.5252. IR (KBr) 3433, 2943, 1655, 1078 cm⁻¹. ¹H-NMR (pyridine-*d*₅, 600 MHz) δ 0.94, 0.99, 1.13, 1.52, 1.57, 1.58, 1.59, 2.00 (3H each, all s, 19, 30, 18, 29, 27, 26, 21, 28-H₃), 3.45 (1H, dd, *J*=4.9, 11.5 Hz, 3-H), 4.08 (1H, m, 12-H), 4.32 (1H, m, 6-H), 4.69 (1H, dd-like, *J*=*ca*. 5, 8 Hz, 24-H), 4.96 (1H, d, *J*=7.4 Hz, 1'-H), 5.01, 5.20 (each 1H, both br s, 26-H₂), 5.20 (1H, d, *J*=7.7 Hz, 1'''-H), 5.38 (1H, d, *J*=7.6 Hz, 1''-H). ¹³C-NMR (pyridine-*d*₅, 150 MHz) δ c: give in Table 1. Positive-ion FAB-MS *m*/*z* 1017 (M+Na)⁺. Negative-ion FAB-MS *m*/*z* 993 (M-H)⁻, 977 (M-OH)⁻, 813 (M-OH-C₆H₁₁O₅)⁻;

Floralginsenoside La (**6**): a white amorphous powder, $[\alpha]_D^{27}$ +2.3° (*c*=0.12, MeOH). High-resolution positive-ion FAB-MS: Calcd for C₄₈H₈₂O₁₉Na (M+Na)⁺: 985.5348. Found: 985.5341. IR (KBr): 3415, 2361, 1655, 1076 cm⁻¹. ¹H-NMR (pyridine-*d*₅, 500 MHz) δ 0.94, 0.97, 1.18, 1.35, 1.58, 1.88, 2.06 (3H each, all s, 30, 19, 18, 29, 21, 27, 28-H₃), 3.44 (1H, dd, *J*=4.6, 11.5 Hz, 3-H), 4.08 (1H, m, 12-H), 4.40 (1H, m, 24-H), 4.66 (1H, dd, *J*=3.2, 10.4 Hz, 6-H), 4.89, 5.25 (each 1H, both br s, 26-H₂), 5.16 (1H, d, *J*=7.8 Hz, 1^{'''}-H), 5.22 (1H, d, *J*=6.6 Hz, 1'-H), 6.41 (1H, s, 1''-H). ¹³C-NMR (pyridine-*d*₅, 125 MHz) δ c: give in Table 1. Positive-ion FAB-MS *m*/*z* 985 (M+Na)⁺. Negative-ion FAB-MS *m*/*z* 961 (M-H)⁻, 781 (M-C₆H₁₂O₆)⁻.

Floralginsenoside Lb (7): a white amorphous powder, $[\alpha]_{D}^{26}$ -7.5° (*c*=0.45, MeOH). High-resolution positive-ion FAB-MS: Calcd for C₄₈H₈₂O₁₉Na (M+Na)⁺: 985.5348. Found: 985.5355. IR (KBr): 3451, 2361, 1655, 1074 cm⁻¹. ¹H-NMR (pyridine-*d*₅, 600 MHz) δ 0.83, 0.90, 1.11, 1.30, 1.50, 1.88, 2.05 (3H each, all s, 30, 19, 18, 29, 21, 27, 28-H₃), 3.39 (1H, dd, *J*=4.9, 11.7, 3-H), 3.92 (1H, m, 12-H), 4.32 (1H, m, 24-H), 4.62 (1H, dd, *J*=3.4, 10.4, 6-H), 4.86, 5.22 (each 1H, both s, 26-H₂), 5.15 (1H, d, *J*=7.6 Hz, 1^{'''}-H), 5.20 (1H, d, *J*=6.9 Hz, 1'-H), 6.40 (1H, s, 1''-H). ¹³C-NMR (pyridine-*d*₅, 150 MHz) δ c: give in Table 1. Positive-ion FAB-MS: *m/z* 985 (M+Na)⁺. Negative-ion FAB-MS: *m/z* 961 (M-H)⁻, 781 (M-C₆H₁₂O₆)⁻.

Acid Hydrolysis of Floralginsenosides G (1), H (2), I (3), J (4), K (5), La (6) and Lb (7).

A solution of 1–7 (1 mg each) in 1.0 M HCl (1.0 mL) was heated under reflux for 3 h. After cooling, the reaction mixture was poured into ice-water and neutralized with Amberlite IRA-400 (OH⁻ form), and the resin was removed by filtration. Then, the filtrate was extracted with EtOAc. The aqueous layer was subjected to HPLC analysis under the following conditions: HPLC column, Kaseisorb LC NH₂-60-5, 250 mm × 4.6 mm i.d. (Tokyo Kasei Co., Ltd., Tokyo, Japan); detection, optical mobile phase, MeCN–H₂O (75:25, v/v); flow rate 0.80 ml/min; column temperature, room tempereture. Identification of D-glucose, L-rhamnose present in the aqueous layer was carried out by comparison of its retention time and optical rotation with that of an authentic sample. t_R :6.2 min (L-rhamnose, negative optical rotation), 8.6 min (D-glucose, positive optical rotation), respectively.

Alkaline hydrolysis of floralginsenosides G (1), H (2).

A solution of floralginsenosides (1 and 2: 2 mg each) in 50% aqueous 1,4-dioxane (1.0 mL) was treated with 10% aqueous KOH (1.0 mL) and the whole was stirred at 37 °C for 1 h. After removal of the solvent from a part (0.1 mL) of the reaction mixture under reduced pressure, the residue was dissolved in (CH₂)₂Cl₂ (1.0 mL) and the solution was treated with *p*-nitrobenzyl-*N*,*N*'-diisopropylisourea (1 mg), then the whole was stirred at 80°C for 1 h. The reaction mixture was subjected to HPLC analysis [column: COSMOSIL 5C₁₈-MS-II, 250 0 4.6 mm i.d.; mobile phase: MeOH–H₂O (70:30, v/v); detection: UV (254 nm); flow rate: 1.00 mL/min] to identify the *p*-nitrobenzylester of acetic acid (t_R 5.3 min). The rest of each reaction was neutralized with DOWEX HCR W2 (H⁺ form) and the resin was removed by filtration. Evaporation of the solvent from the filtrate under reduced pressure yielded a product, which was subjected to HPLC analysis [column: COSMOSIL 5C₁₈-MS-II, 250 × 4.6 mm i.d.; mobile phase: MeOH–H₂O (70:30, v/v); detection: RI; flow rate: 1.00 ml/min] to identify notoginsenoside-E (**12**, from **1**) or ginsenoside I (**14**, from **2**).

Treatment of 4 with pyridine. A solution of **4** (15 mg) in pyridine (0.6 mL) was permitted to stand for 2 d at 40°C. Removal of the solvent from the reaction solution under reduced pressure gave **8** (15 mg).

8: a white amorphous powder, $[\alpha]_{D}^{26}$ -7.2° (*c*=0.45, MeOH). High-resolution positive-ion FAB-MS: Calcd for C₄₈H₈₀O₁₉Na (M+Na)⁺: 983.5192. Found: 983.5187. IR (KBr): 3451, 2930, 1745, 1677, 1074 cm⁻¹; ¹H-NMR (pyridine-*d*₅, 600 MHz) δ 0.86, 0.89, 1.07, 1.28, 1.44, 1.77, 2.03 (3H each, all s, 30, 19, 18, 29, 21, 27, 28-H₃), 3.39w (1H, dd, *J*=4.8, 11.7 Hz, 3-H), 4.02 (1H, m, 12-H), 4.60 (1H, dd, *J*=3.4, 12.4 Hz, 6-H), 5.08 (1H, d, *J*=7.8 Hz, 1"'-H), 5.16 (1H, dd, *J*=6.9 Hz, 1'-H), 5.59, 6.14 (each 1H, both s, H₂-26), 6.43 (1H, s, 1"-H). ¹³C-NMR (pyridine-*d*₅, 150 MHz) δ c: give in Table 1. Positive-ion FAB-MS: *m/z* 983 (M+Na)⁺. Negative-ion FAB-MS: *m/z* 959 (M-H)⁻, 797 (M-C₆H₁₁O₅)⁻.

NaBH₄ **Reduction of 8.** A solution of **8** (4.0 mg) in MeOH (2.0 ml) was treated with NaBH₄ (2.5 mg) and CeCl₃ • 7H₂O (4.0 mg) and the whole mixture was stirred at room temperature for 2 h. After treatment of the reaction mixture with acetone (6.0 ml), the whole was evaporation under reduced pressure to give a residue. The residue was purified with silica gel column chromatography [0.5 g, CHCl₃-MeOH-H₂O (10:3:1–65:35:10, lower layer, v/v/v)] to give a mixture of **6** and **7** (3.8 mg, ca 2:1), which was separated by HPLC [COSMOSIL 5C₁₈-MS-II, (250 × 4.6 mm i.d.), MeCN–H₂O (1:5, v/v)]. Compounds **6** and **7** were identified with authentic samples by HPLC and ¹H-NMR.

ACKNOWLEDGMENTS

This research was supported by the 21st COE program, Academic Frontier Project, and Grand-in Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

REFERENCES AND NOTES

- 1 This paper is number XIII in our series Medicinal Flowers. For paper number XII, see: M. Yoshikawa, F. Xu, T. Morikawa, Y. Pongpiriyadacha, Y. Asao, A. Kumahara, and H. Matsuda, *Chem. Pharm. Bull.*, 2007, **55**, in press.
- 2 M. Yoshikawa, T. Morikawa, K. Yamamoto, Y. Kato, A. Nagatomo, and H. Matsuda, *J. Nat. Prod.*, 2005, **68**, 1360.

- 3 H. Matsuda, T. Morikawa, T. Ohgushi, T. Ishiwada, N. Nishida, and M. Yoshikawa, *Chem. Pharm. Bull.*, 2005, **53**, 387.
- 4 M. Yoshikawa, S. Sugimoto, S. Nakamura, and H. Matsuda, *Chem. Pharm. Bull.*, 2007, 55, in press.
- 5 S. Nakamura, S. Sugimoto, H. Matsuda, Y. Asao, S. Takayama, M. Yoshikawa, and T. Morikawa, presented at the 53th Annual Meeting of the Japanese Society of Pharmacology, Saitama, Japan, Sep, 2006, Abstract Paper p. 64.
- 6 T. Morita, Y.-C. Kong, P. P.-H. But, K.-H. Ng, T.-T. Yip, R. Kasai, and O. Tanaka, *Chem. Pharm. Bull.*, 1986, **34**, 4368.
- 7 N.-M. Duc, R. Kasai, K. Ohtani, A. Ito, N.-T. Nham, K. Yamasaki, and O. Tanaka, *Chem. Pharm. Bull.*, 1994, **42**, 115.
- 8 M. Yoshikawa, T. Murakami, T. Ueno, K. Yashiro, N. Murakami, J. Yamahara, H. Matsuda, R. Saijoh, and O. Tanaka, *Chem. Pharm. Bull.*, 1997, **45**, 1056.
- 9 D.-Q. Wang, B.-S. Feng, C.-R. Yang, and J. Zhou, Acta Pharmaceutical Sinica, 1989, 24, 633.
- 10 W.-G. Ma, M. Mizutani, K.-E. Malterud, S.-L. Lu, B. Ducrey, and S. Tahara, *Phytochemistry*, 1999, **52**, 1133.
- 11 H. Besso, R. Kasai, Y. Saruwatari, T. Fuwa, and O. Tanaka, Chem. Pharm. Bull., 1982, 30, 2380.
- 12 T.-R. Yang, R. Kasai, J. Zhou, and O. Tanaka, *Phytochemistry*, 1983, 22, 1473.
- 13 E. Knappe and D. Peteri, Z. Anal. Chem., 1962, 190, 380.
- 14 T. Morikawa, F. Xu, Y. Kashima, H. Matsuda, K. Ninomiya, and M. Yoshikawa, *Org. Lett.*, 2004, **6**, 869.
- 15 H. Xie, T. Morikawa, H. Matsuda, S. Nakamura, O. Muraoka, and M. Yoshikawa, *Chem. Pharm. Bull.*, 2006, **54**, 669.
- 16 The ¹H-NMR and ¹³C-NMR spectra of **1–8** were assigned with the aid of homo- and heterocorrelation spectroscopy (¹H-¹H, ¹H-¹³C COSY), distortionless enhancement by polarization transfer (DEPT) and HMBC experiments.
- 17 The stereostructures of the 24-positions in 2, 4, 6 and 7 have not been characterized yet.
- 18 M. Yoshikawa, T. Morikawa, T. Ueno, K. Yashiro, N. Hirokawa, N. Murakami, J. Yamahara, H. Matsuda, R. Saijoh, and O. Tanaka, *Chem. Pharm. Bull.*, 1997, 45, 1039.
- 19 Q.-L. Tran, I.-K. Adnyana, Y. Tezuka, T. Nagaoka, Q.-K. Tran, and S. Kadota, J. Nat. Prod., 2001, 64, 456.
- 20 H.-H. Wasserman and J.-L. Ives, *Tetrahedron*, 1981, **37**, 1825.
- 21 B. Feng, X. Wang, D. Wang, C. Yang, and J. Zhou, Acta Botanica Yunnanica, 1987, 9, 477.
- 22 The stereostructure of the 24-hydroxyl group was reported to be capable of determination by comparison of ¹³C-NMR data,²¹ and the signals due to the side chain part (20-C–27-C) in the ¹³C-NMR spectra of **6** and **7** were conformity with those of the 24(*R*)- and 24(*S*)-compounds, respectively. However, the differences of the chemical shifts between the 24(*R*)- and 24(*S*)-compounds were found to be very small, so that we did not adapt the rule to **6** and **7**.