SYNTHESISOF4,5-DIAMINOPYRROLO[1,2-a]QUINOLINEDERIVATIVESBYALEWISACIDCATALYZEDREACTIONOF2-(PYRROL-1-YL)BENZALDIMINESWITH ISOCYANIDES

Kazuhiro Kobayashi,* Yasutoshi Himei, Yuichi Izumi, Shuhei Fukamachi, Osamu Morikawa, and Hisatoshi Konishi

Department of Materials Science, Faculty of Engineering, Tottori University, 4-101 Koyama-minami, Tottori 680-8552, Japan

Abstract - N-Alkyl(or aryl)-2-(pyrrol-1-yl)benzaldimines, derived from 2-(pyrrol-1-yl)benzaldehydes and primary amines, were treated with aromatic and aliphatic isocyanides in the presence of a catalytic amount of boron trifluoride diethyl etherate to afford the corresponding 4,5-diaminopyrrolo[1,2-*a*]quinoline derivatives in generally fair to good yields.

Pyrrolo[1,2-*a*]quinolines are known to be of potentially importance for both practical and theoretical utilities as one of the benzo analogues of indolizines.¹ For recent years, efforts in our laboratory have been targeted to the development of methods for the preparation of pyrrolo[1,2-*a*]quinoline derivatives.² Thus, we reported a boron trifluoride diethyl etherate catalyzed synthesis of 4-aryl(or alkyl)aminopyrrolo[1,2-*a*]quinolin-5-ol derivatives from 2-(pyrrol-1-yl)benzaldehyde and isocyanides.³ Subsequently, we demonstrated that reactions of 2-(pyrrol-1-yl)benzaldehydes with isocyanides and secondary amine hydrochlorides in the presence of NaI/TMSCI/Et₃N afforded 5-dialkylamino-4-aryl(or alkyl)aminopyrrolo[1,2-*a*]quinolines.⁴ Herein we wish to report that 4,5-diaminopyrrolo[1,2-*a*]quinoline derivatives (**3**) can be obtained by a boron trifluoride diethyl etherate catalyzed reaction of 2-(pyrrol-1-yl)benzaldimines (**2**) with isocyanides.

2-(Pyrrolyl)benzaldimines (2) were prepared in almost quantitative yields by treating 2-(pyrrol-1-yl)benzaldehydes (1) with primary amines at rt. We conducted the reactions of these aldimines with isocyanides in the presence of a catalytic amount of boron trifluoride diethyl etherate (0.1 equiv.) in dichloromethane at 0 °C, and found that 4,5-diaminopyrrolo[1,2-*a*]quinoline derivatives (3) were produced as shown in Scheme 1. As can be seen from the results summarized in Table 1, generally fair to good yields of the desired products were obtained. However, bulky isocyanides, such as *o*-tolyl isocyanide and *tert*-butyl isocyanide, prove to give the desired products (**3b** and **3c**) in somewhat diminished yields (Entries 2 and 3). The reaction of *N-o*-tolylaldimine (**2b**) with phenyl isocyanide also

Scheme 1

Table 1: Preparation of 4,5-diaminopyrrolo[1,2-a]quinolone derivatives (3)

Entry	1	\mathbb{R}^3	2	\mathbb{R}^4	$3 (\text{Yield} / \%)^{a}$
1	$1a (R^1 = R^2 = H)$	Ph	2a	Ph	3a (66)
2	1a	Ph	2a	o-Tol	3b (50)
3	1a	Ph	2a	<i>t</i> -Bu	3c (49)
4	1a	<i>o</i> -Tol	2b	Ph	3d (54)
5	1a	$4-(i-\Pr)C_6H_4$	2c	Ph	3e (68)
6	1a	$4-MeOC_6H_4$	2d	Ph	3f (72)
7	1b ($R^1 = R^2 = OMe$)	Ph	2e	Ph	3g (44)
8	$1c (R^1 = Cl, R^2 = H)$	Ph	2f	Ph	3h (63)
9	1c	<i>n</i> -Bu	2g	Ph	3i (27)

^aIsolated yields from **1**.

gave a similar result, probably due to a bulky o-tolyl substituent (Entry 4). It should be noted that the use of *N*-phenyl-4,5-dimethoxy-2-(pyrrol-1-yl)benzaldehyde (**1b**) gave a somewhat poorer result (Entry 7); probably resulting from the decreased electrophilicity of the imino carbon due to two methoxy groups. We also should note that the use of *N*-butylaldimine (**2g**) considerably decreased the yield of the desired product **3i** (Entry 9); the starting imine was less reactive under present reaction conditions and a fair amount of the imine was recovered. Neither higher reaction temperatures nor longer reaction times improved the yield of the desired product. The use of more than 0.1 equiv. of the catalyst also did not give any better results.

The probable pathway which transforms 2-(pyrrol-1-yl)benzaldimines (2) and isocyanides into pyrrolo[1,2-a]quinoline derivatives (3) is outlined in Scheme 2. Thus, attack of the isocyano carbon of an isocyanide to the activated imine (4) generates the iminyl cation intermediate (5). Intramolecular combination of the 2-carbon of the pyrrole ring and the cation center of 5 affords the intermediate (6), which gives rise to 3 through tautomerizations.

In conclusion, we have demonstrated that 4,5-diaminopyrrolo[1,2-*a*]quinoline derivatives can be obtained in satisfactory yields in two steps from readily available 2-(pyrrol-1-yl)benzaldehydes. This method may find efficiency in its simplicity and the ready availability of the starting materials.

EXPERIMENTAL

All melting points were obtained on a Laboratory Devices MEL-TEMP II melting apparatus and are uncorrected. IR spectra were determined with a Shimadzu FTIR-8300 spectrophotometer. The ¹H NMR spectra were determined in CDCl₃ using TMS as an internal reference with a JEOL JNM-GX270 FT NMR spectrometer operating at 270 MHz. *J* values are given in Hz. The ¹³C NMR spectra were determined using SiMe₄ as an internal reference with a JEOL ECP500 FT NMR spectrometer operating at 125 MHz in CDCl₃. Low-resolution MS spectra were measured by a JEOL AUTOMASS 20 spectrometer (Center for Joint Research and Development, this University). TLC was carried out on a Merck Kieselgel 60 PF₂₅₄. Column chromatography was performed using Merck Kieselgel 60 (0.063–0.200 mm). All of the organic solvents used in this study were dried over appropriate drying agents and distilled prior to use. **Starting Materials.** 2-(1-Pyrrolyl)benzaldehydes (1) were prepared following the procedure reported by us.⁵ Isocyanides were prepared by a modification^{6a} of Ugi's method.^{6b}

N-Phenyl-2-(pyrrol-1-yl)phenylmethylenamine (2a). Typical Procedure for the Preparation of Imines (2). A mixture of 2-(1-pyrrolyl)benzaldehyde (1a) (0.17 g, 1.0 mmol) and aniline (0.86 g, 2.0 mmol)) was stirred at rt overnight. Excess aniline was removed under reduced pressure. The resulting crude imine (2a) was used in the next step without further purification. 2a: a yellow oil; R_f 0.63 (3:1 hexane–EtOAc); IR (neat) 1621, 1601 cm⁻¹; ¹H NMR δ 6.35 (2H, dd, *J* 2.3, 2.0), 6.90 (2H, dd, *J* 2.3, 2.0), 7.1–7.6 (8H, m), 8.23 (1H, s), 8.29 (1H, dd, *J* 7.6, 2.0).

N-(2-Methylphenyl)-2-(pyrrol-1-yl)phenylmethylenamine (2b): a yellow oil; R_f 0.69 (5:1 hexane–EtOAc); IR (neat) 1622, 1600 cm⁻¹; ¹H NMR δ 2.37 (3H, s), 6.35 (2H, dd, *J* 2.3, 2.0), 6.79 (1H, dd, *J* 7.3, 1.6), 6.90 (2H, dd, *J* 2.3, 2.0), 7.0–7.25 (3H, m), 7.38 (1H, dd, *J* 7.3, 2.0), 7.4–7.6 (2H, m), 8.14 (1H, s), 8.33 (1H, dd, *J* 7.3, 2.0).

N-[4-(1-Methylethyl)phenyl]-2-(pyrrol-1-yl)phenylmethylenamine (2c): a yellow oil; *R_f* 0.69 (5:1 hexane–EtOAc); IR (neat) 1621, 1596 cm⁻¹; ¹H NMR δ 1.25 (6H, d, *J* 6.9), 2.91 (1H, septet, *J* 6.9), 6.35 (2H, dd, *J* 2.3, 2.0), 6.89 (2H, dd, *J* 2.3, 2.0), 7.09 (2H, d, *J* 8.6), 7.21 (2H, d, *J* 8.6), 7.37 (1H, dd, *J* 8.6, 1.3), 7.4–7.6 (2H, m), 8.25 (1H, s), 8.29 (1H, dd, *J* 7.6, 2.0).

N-(4-Methoxyphenyl)-2-(pyrrol-1-yl)phenylmethylenamine (2d): a yellow solid; mp 75–76 °C (hexane–CH₂Cl₂); IR (KBr disk) 1618, 1601 cm⁻¹; ¹H NMR δ 3.81 (3H, s), 6.36 (2H, dd, *J* 2.3, 2.0),

6.85–6.95 (4H, m), 7.15 (2H, d, *J* 9.0), 7.37 (1H, dd, *J* 7.3, 2.0), 7.4–7.55 (2H, m), 8.24 (1H, s), 8.28 (1H, dd, *J* 7.3, 2.0).

N-Phenyl-4,5-dimethoxy-2-(pyrrol-1-yl)phenylmethylenamine (2e): a yellow solid; mp 137–138 °C (hexane–CH₂Cl₂); IR (KBr disk) 1603, 1582 cm⁻¹; ¹H NMR δ 3.94 (3H, s), 4.04 (3H, s), 6.33 (2H, dd, *J* 2.3, 2.0), 6.85 (1H, s), 6.87 (2H, dd, *J* 2.3, 2.0), 7.10 (2H, dd, *J* 7.6, 1.3), 7.18 (1H, tt, *J* 7.6, 1.3), 7.34 (2H, t, *J* 7.6), 7.79 (1H, s), 8.09 (1H, s).

N-Phenyl-5-chloro-2-(pyrrol-1-yl)phenylmethylenamine (2f): a yellow oil; R_f 0.78 (5:1 hexane–EtOAc); IR (neat) 1622, 1587 cm⁻¹; ¹H NMR δ 6.36 (2H, dd, *J* 2.3, 2.0), 6.86 (2H, dd, *J* 2.3, 2.0), 7.14 (2H, dd, *J* 7.6, 1.3), 7.23 (1H, tt, *J* 7.3, 1.3), 7.3–7.4 (3H, m), 7.47 (1H, dd, *J* 8.4, 2.3), 8.17 (1H, s), 8.29 (1H, d, *J* 2.3).

N-Butyl-5-chloro-2-(pyrrol-1-yl)phenylmethylenamine (2g): a yellow oil; *R*_f 0.51 (5:1 hexane–EtOAc); IR (neat) 1640 cm⁻¹; ¹H NMR δ 0.93 (3H, t, *J* 7.3), 1.35 (2H, sextet, *J* 7.3), 1.65 (2H, quint, *J* 7.3), 3.54 (2H, td, *J* 7.3, 1.3), 6.35 (2H, *J* 2.4, 2.0), 6.80 (2H, dd, *J* 2.4, 2.0), 7.25 (1H, d, *J* 8.6), 7.41 (1H, dd, *J* 8.6, 2.6), 7.94 (1H, t, *J* 1.3), 8.05 (1H, d, *J* 2.6).

4,5-Bis(phenylamino)pyrrolo[1,2-*a***]quinoline (3a). Typical Procedure for the Preparation of Diaminopyrroloquinolines (3).** To a stirred solution of **2a** (0.27 g, 1.1 mmol) and phenyl isocyanide (0.17 g, 1.7 mmol) in CH₂Cl₂ (6 mL) at 0 °C under argon was added BF₃·OEt₂ (16 mg, 0.11 mmol). After 5 min, the mixture was diluted with CH₂Cl₂ (10 mL), washed successively with saturated aqueous NaHCO₃ and brine, dried over anhydrous MgSO₄, and evaporated. The residue was purified by column chromatography on silica gel (1:2 CH₂Cl₂-hexane) to give **3a** (0.25 g, 66%) as a yellow solid: mp 150 °C (decomp) (hexane–EtOAc); IR (KBr disk) 3319, 1598 cm⁻¹; ¹H NMR δ 5.29 (1H, br), 6.00 (1H, br), 6.25 (1H, d, *J* 4.0), 6.62 (2H, d, *J* = 7.6), 6.69 (1H, dd, *J* 3.7, 3.0), 6.77 (1H, t, *J* 7.3), 6.85 (2H, dd, *J* 7.3, 1.3), 6.91 (1H, t, *J* 7.3), 7.05–7.3 (5H, m), 7.43 (1H, t, *J* 7.3), 7.70 (1H, d, *J* 7.9), 7.87 (1H, br s), 7.91 (1H, d, *J* 7.9); ¹³C NMR δ 103.58, 112.53, 112.64, 114.24 (two overlapped C's), 117.80, 118.45, 119.00, 121.05, 122.96, 123.85, 124.51, 126.27, 127.64, 128.92, 129.13, 129.35, 131.81, 143.79, 146.59; MS *m/z* 349 (M⁺, 100). Anal. Calcd for C₂₄H₁₉N₃: C, 82.49; H, 5.48; N, 12.03. Found: C, 82.47; H, 5.52; N, 11.86.

4-(2-Methylphenyl)amino-5-(phenylamino)pyrrolo[1,2-*a***]quinoline (3b):** a yellow solid; mp 119 °C (decomp) (hexane–EtOAc); IR (KBr disk) 3358, 1601 cm⁻¹; ¹H NMR δ 2.17 (3H, s), 5.18 (1H, br s), 5.72 (1H, br s), 6.14 (1H, dd, *J* 3.8, 1.6), 6.61 (2H, dd, *J* 8.6, 1.0), 6.67 (1H, dd, *J* 3.8, 3.0), 6.7-6.8 (2H, m), 6.89 (1H, ddd, *J* 7.6, 7.3, 1.4), 7.02 (1H, t, *J* 8.1), 7.12 (2H, t, *J* 8.6), 7.25 (1H, td, *J* 7.6, 1.2), 7.72 (1H, dd, *J* 7.9, 1.3), 7.87 (1H, dd, *J* 3.0, 1.6), 7.90 (1H, d, *J* 8.3); ¹³C NMR δ 17.77, 103.34, 112.52, 112.68, 114.12, 114.21, 116.32, 118.95, 119.01, 121.72, 123.50, 123.89, 124.16, 125.91, 126.38, 127.65, 128.03, 129.36, 130.24, 130.42, 131.53, 141.82, 146.70; MS *m*/*z* 363 (M⁺, 100). Anal. Calcd for C₂₅H₂₁N₃: C, 82.61; H, 5.82; N, 11.56. Found: C, 82.75; H, 6.09; N, 11.39.

4-(*tert*-Butylamino)-5-(phenylamino)pyrrolo[1,2-*a*]quinoline (3c): a yellow solid; mp 149 °C (decomp)

(hexane–EtOAc); IR (KBr disk) 3435, 3369, 1601 cm⁻¹; ¹H NMR δ 1.26 (9H, s), 1.55–1.65 (1H, br), 5.62 (1H, br s), 6.6–6.85 (5H, m), 7.1–7.25 (3H, m), 7.39 (1H, ddd, *J* 8.2, 6.9, 1.3), 7.62 (1H, dd, *J* 8.2, 1.3), 7.83 (1H, *J* 2.6, 1.6), 7.86 (1H, d, *J* 8.2); ¹³C NMR δ 1.01, 31.41, 103.57, 112.30, 112.42, 114.14, 114.79, 118.90, 121.44, 122.63, 123.45, 125.19, 126.37, 129.30, 131.65, 131.73, 132.07, 146.86; MS *m/z* 329 (M⁺, 32), 272 (100). Anal. Calcd for C₂₂H₂₃N₃: C, 80.21; H, 7.04; N, 12.76. Found: C, 79.95; H, 7.12; N, 12.75. **5-(2-Methylphenyl)amino-4-(phenylamino)pyrrolo[1,2-***a***]quinoline (3d): yellow needles; mp 164 °C (decomp) (hexane–EtOAc); IR (KBr disk) 3383, 1595 cm⁻¹; ¹H NMR \delta 2.18 (3H, s), 5.07 (1H, br s), 5.87 (1H, br s), 6.30 (1H, dd,** *J* **4.0, 1.4), 6.33 (1H, d,** *J* **8.9), 6.65–6.75 (2H, m), 6.84 (2H, dd,** *J* **8.6, 1.0), 6.91 (2H, t,** *J* **8.6), 7.10 (1H, d,** *J* **6.9), 7.15–7.3 (4H, m), 7.44 (1H, td,** *J* **8.2, 1.3), 7.61 (1H, dd,** *J* **7.9, 1.3), 7.88 (1H, dd,** *J* **3.0, 1.4), 7.92 (1H, d,** *J* **8.6); ¹³C NMR \delta 17.42, 102.93, 112.52, 112.67, 112.75, 114.23, 117.94, 118.54, 118.70, 120.88, 122.82, 122.87, 123.83, 124.60, 126.37, 127.01, 128.11, 128.27, 129.02, 130.31, 131.85. 143.86, 144.43; MS** *m/z* **363 (M⁺, 100). Anal. Calcd for C₂₅H₂₁N₃: C, 82.61; H, 5.82; N, 11.56. Found; C, 82.52; H, 6.08; N, 11.50.**

5-[4-(2-Methylethyl)phenyl]amino-4-(phenylamino)pyrrolo[1,2-*a***]quinoline (3e): a yellow solid; mp 158 °C (decomp) (hexane–EtOAc); IR (KBr disk) 3354, 1613, 1600 cm⁻¹; ¹H NMR \delta 1.19 (6H, d,** *J* **6.6), 2.79 (1H, septet,** *J* **6.6), 5.24 (1H, br s), 6.00 (1H, br s), 6.23 (1H, dd,** *J* **4.0, 1.1), 6.57 (2H, d,** *J* **8.4), 6.69 (1H, dd,** *J* **4.0, 2.9), 6.84 (1H, dd,** *J* **8.4, 1.1), 6.91 (1H, t,** *J* **7.3), 6.99 (2H, d,** *J* **8.4), 7.15–7.3 (3H, m), 7.42 (1H, t,** *J* **8.4), 7.70 (1H, dd,** *J* **8.0, 1.1), 7.86 (1H, dd,** *J* **2.9, 1.1), 7.91 (1H, d,** *J* **8.4); ¹³C NMR \delta 24.15, 33.16, 103.41, 112.50, 114.21, 114.42, 118.30, 118.73, 120.90, 122.93, 123.79, 124.71, 126.26, 127.20, 127.78, 128.66, 128.91 (two overlapped C's), 131.86, 139.60, 143.95, 144.46; MS** *m/z* **363 (M⁺, 100). Anal. Calcd for C₂₇H₂₅N₃: C, 82.83; H, 6.44; N, 10.73. Found; C, 82.57; H, 6.51; N, 10.70.**

5-[(4-Methoxyphenyl)amino]-4-(phenylamino)pyrrolo[1,2-*a***]quinoline (3f): a pale-brown solid; mp 140 °C (decomp) (hexane–CH₂Cl₂); IR (KBr disk) 3354, 1599 cm⁻¹; ¹H NMR \delta 3.72 (3H, s), 5.22 (1H, br s), 5.92 (1H, br s), 6.24 (1H, dd,** *J* **4.0, 1.3), 6.60 (2H, d,** *J* **9.2), 6.65–6.75 (3H, m), 6.83 (2H, dd,** *J* **8.3, 1.3), 6.90 (1H, t,** *J* **7.3), 7.15-7.3 (3H, m), 7.43 (1H, td,** *J* **8.3, 1.3), 7.69 (1H, dd,** *J* **8.3, 1.3), 7.85 (1H, dd,** *J* **3.0, 1.3), 7.91 (1H, d,** *J* **7.9); ¹³C NMR \delta 55.63, 102.92, 112.45, 112.51, 114.25, 114.76, 116.01, 117.82, 120.02, 120.74, 122.64, 123.71, 124.81, 126.40, 127.64, 128.08, 128.98, 132.01, 140.31, 144.11, 153.20; MS** *m/z* **379 (M⁺, 100). Anal. Calcd for C₂₅H₂₁N₃O: C, 79.13; H, 5.58; N, 11.07. Found; C, 78.88; H, 5.62; N, 11.02.**

7,8-Dimethoxy-4,5-bis(phenylamino)pyrrolo[1,2-*a***]quinoline (3g**): a yellow solid; mp 180 °C (decomp) (hexane–EtOAc); IR (KBr disk) 3368, 3322, 1622, 1603 cm⁻¹; ¹H NMR δ 3.73 (3H, s), 4.05 (3H, s), 5.40 (1H, br s), 5.68 (1H, br s), 6.28 (1H, dd, *J* 4.0, 1.0 Hz), 6.61 (2H, d, *J* 7.6 Hz), 6.7–6.9 (7H, m), 7.05–7.25 (3H, m), 7.33 (1H, s), 7.73 (1H, br s); ¹³C NMR δ 55.96, 56.26, 97.43, 101.76, 106.56, 111.48, 112.50, 114.94, 115.85, 116.71, 119.29, 120.15, 120.85, 125.56, 126.67, 128.77, 129.08, 129.21, 144.58, 146.32, 146.40, 149.03; MS *m/z* 409 (M⁺, 100). Anal. Calcd for C₂₆H₂₃N₃O₃: C, 76.26; H, 5.66; N,

10.26. Found; C, 76.14; H, 5.54; N, 10.30.

7-Chloro-4,5-bis(phenylamino)pyrrolo[1,2-*a***]quinoline (3h): a pale-brown solid; mp 160 °C (decomp) (hexane–CH₂Cl₂); IR (KBr disk) 3410, 3357, 1598 cm⁻¹; ¹H NMR \delta 5.05–5.25 (1H, br), 6.0–6.2 (1H, br), 6.22 (1H, dd,** *J* **4.0, 1.6), 6.60 (2H, dd,** *J* **8.6, 1.0), 6.69 (1H, dd,** *J* **4.0, 3.0), 6.78 (1H, t,** *J* **7.3), 6.87 (2H, dd,** *J* **8.6, 1.0), 6.96 (1H, tt,** *J* **7.3, 1.0), 7.1–7.25 (4H, m), 7.34 (1H, dd,** *J* **8.6, 2.3), 7.64 (1H, d,** *J* **2.3), 7.82 (combined 2H, d and dd,** *J* **8.6 and** *J* **3.0, 1.6, respectively); ¹³C NMR \delta 104.45, 112.80, 112.94, 113.85, 115.16, 115.56, 119.14, 119.50, 121.77, 123.31, 124.96, 125.80, 126.95, 128.87, 129.47, 129.51, 129.88, 131.11, 143.02, 146.12; MS** *m***/***z* **383 (M⁺, 100). Anal. Calcd for C₂₄H₁₈N₃Cl: C, 75.09; H, 4.73; N, 10.95. Found: C, 74.70; H, 4.68; N, 10.83.**

5-(Butylamino)-7-chloro-4-(phenylamino)pyrrolo[1,2-*a*]quinoline (3i): a yellow viscous oil; R_f 0.54 (1:5 AcOEt–hexane); IR (neat) 3340, 1601 cm⁻¹; ¹H NMR & 0.86 (3H, t, *J* 7.3), 1.25–1.6 (5H, m), 3.04 (2H, t, *J* = 7.3), 5.47 (1H, br s), 6.19 (1H, dd, *J* 4.0, 1.6), 6.65 (1H, dd, *J* 4.0, 3.0), 6.77 (2H, dd, *J* 7.6, 1.0), 6.85 (1H, t, *J* 7.6), 7.21 (2H, t, *J* 7.6), 7.42 (1H, dd, *J* 8.6, 2.3), 7.72 (1H, dd, *J* 3.0, 1.6), 7.80 (1H, d, *J* 8.6), 7.91 (1H, d, *J* 2.3); ¹³C NMR & 13.88, 20.11, 33.00, 49.46, 100.35, 111.85, 112.88, 115.30, 115.87, 119.83, 121.46, 122.99, 124.37, 126.92, 128.95, 129.35, 129.76, 130.75, 131.28, 145.28; MS *m/z* 363 (M⁺, 56), 306 (100). Anal. Calcd for C₂₂H₂₂N₃Cl: C, 72.62; H, 6.09; N, 11.55. Found: C, 72.59; H, 6.36; N, 11.49.

ACKNOWLEDGEMENTS

We are grateful to Mrs. Miyuki Tanmatsu of this Department for determining mass spectra and performing combustion analyses.

REFERENCES AND NOTES

- F. T. Swinbourne, J. H. Hunt, and K. Kinkert, in "Advances in Heterocyclic Chemistry," Vol. 32, ed. by A. R. Katritzky and A. J. Boulton, Academic Press, New York, 1978, pp. 103–170.
- For recent reports on the synthesis of pyrrolo[1,2-a]quinoline derivatives, see pertinent references cited in ref. 6. See also, Y. Yavari, Z. Hossaini, and M. Sabbaghan, *Tetrahedron Lett.*, 2006, 47, 6037.
- 3. K. Kobayashi, R. Nakahashi, A. Takanohashi, T. Kitamura, O. Morikawa, and H. Konishi, *Chem. Lett.*, 2002, 624.
- 4. K. Kobayashi, A. Takanohashi, K. Hashimoto, O. Morikawa, and H. Konishi, *Tetrahedron*, 2006, **62**, 10379.
- 5. K. Kobayashi, A. Takanohashi, K. Hashimoto, O. Morikawa, and H. Konishi, *Tetrahedron*, 2006, **62**, 3158.