HETEROCYCLES, Vol. 71, No. 5, 2007, pp. 1067 - 1073. © The Japan Institute of Heterocyclic Chemistry Received, 5th January, 2007, Accepted, 8th March, 2007, Published online, 9th March, 2007. COM-07-10992

CASSANE AND NORCASSANE DITERPENOIDS OF CAESALPINIA BONDUC

Joy S. Roach,^a Stewart McLean,^b William F. Reynolds,^b and Winston F. Tinto^{*a}

^aLaboratory of Bioorganic Chemistry, Department of Biological and Chemical Sciences, University of the West Indies, Cave Hill Campus, P. O. Box 64, Bridgetown, Barbados, BB11000 and ^bDepartment of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada

Abstract – Two new cassane and one norcassane diterpenoid (1-3) were isolated from *Caesalpinia bonduc* along with caesaldekarins C (4) and F (5). During acquisition of NMR spectral data on compound 5, it rearranged to produce compounds 7 and 8, via compound 6. The ¹H and ¹³C NMR spectra of all compounds were completely assigned using a combination of 2D NMR experiments, including ¹H-¹H COSY, HSQC, HMBC, and T-ROESY sequences. Compounds 4 and 5 showed modest cytotoxic activity.

INTRODUCTION

Caesalpinia bonduc Roxb. (Fabaceae) is a sprawling evergreen shrub found in the tropics and sub-tropics. The roots, bark, leaves, and mostly the seeds have been used in folk medicine in various parts of the world to treat a myriad of disorders.^{1,2} Roasted seeds are given internally in leprosy and have been found useful in some cases of asthma and to treat malarial fevers. The seeds are also known for their anti-periodic, anti-pyretic, and tonic properties.³ *C. bonduc* seeds have been extensively studied since the late 19^{th} century.⁴ More recently, *C. bonduc* roots have been investigated and have proven to be a rich source of cassane diterpenoids.⁵⁻⁹ We report here the isolation and structure elucidation of two cassane (1 and 2) and one norcassane diterpenoid (3), along with the known caesaldekarins C (4), F (5), and J (8), and the artifacts (6) and (7).

RESULTS AND DISCUSSION

The dichloromethane extract of the roots of *C. bonduc* was fractionated by silica gel chromatography and subsequent preparative HPLC to give compounds (1-5). A sample of compound 5 rearranged to compound 6, during spectral data acquisition. Subsequently compound 6 rearranged to compounds 7 and 8. The structures for compounds 1-8 were elucidated using a combination of 1D and 2D NMR techniques and HREIMS as described in the following.

The molecular formula for **1**, $C_{22}H_{30}O_7$, was established by HREIMS. The ¹H NMR spectrum showed the presence of three tertiary methyl groups at δ 1.09, 1.12, and 1.14, and an acetoxy methyl group at δ 2.14. Two oxymethine protons were observed at δ 4.70 (td, J = 10.9, 5.0, H-7) and 4.95 (t, J = 2.9 Hz, H-1). Signals for a 2,3-disubstituted furan ring were seen at δ 6.61 (d, J = 1.9 Hz, H-15) and 7.30 (d, J = 1.9 Hz,

1		2		3		
Position	δς	δ _H (mult. JHz)	δс	$\delta_{\rm H}$ (mult. JHz)	δс	$\delta_{\rm H}$ (mult. JHz)
1	74.7	4.95 (t, 2.9)	32.5	1.48 (m)	31.6	1.40 (m)
				1.51 (m)		1.58 (m)
2	22.5	1.72 (m)	18.0	1.50 (m)	18.7	1.53 (m)
		2.05 (m)		1.58 (m)		1.86 (m)
3	30.0	1.20 (m)	30.4	1.40 (m)	31.7	1.64 (m)
		1.81 (m)		1.55 (m)		1.94 (m)
4	39.2		44.2		49.0	
5	82.1		76.6		76.4	
6	30.2	1.75 (m)	26.5	1.64 (m)	27.9	1.88 (m)
		2.39 (dd, 12.2, 5.0)		1.82 (m)		2.40 (m)
7	80.6	4.70 (dt, 10.9, 5.0)	24.4	1.44 (m)	21.5	1.60 (m)
				1.84 (m)		2.33 (m)
8	46.4	1.93 (ddd, 10.9, 13.3, 13.3)	34.4	1.76 (m)	44.2	2.33 (m)
9	33.3	2.81 (td, 13.3, 8.6)	38.0	2.39 (m)	44.5	2.62 (m)
10	44.8		41.3		41.7	
11	21.3	2.49 (m)	22.4	2.36 (m)	23.2	2.81 (m)
		2.58 (m)		2.47 (m)		
12	151.5		149.6		166.8	
13	114.0		122.6		119.8	
14	41.3	3.24 (d,13.3)	31.5	2.59 (dq, 7.0, 4.8)	196.1	
15	107.9	6.61 (d, 1.9)	140.4	6.18 (d, 1.8)	106.5	6.64 (d, 2.0)
16	141.7	7.30 (d, 1.9)	108.4	7.22 (d, 1.8)	142.2	7.30 (d, 2.0)
17	174.5		17.5	1.01 (d, 7.0)		
18	17.4	1.14 (s)	17.0	1.01 (s)	15.1	0.89 (s)
19	24.6	1.12 (s)	66.1	3.65 (d, 11.0)	177.2	
				3.92 (d, 11.0)		
20	28.1	1.09 (s)	20.6	1.03 (s)	23.7	1.19 (s)
OAc	168.7					
	21.3	2.14 (s)				
OMe					51.7	3.69 (s)

TABLE 1. NMR SPECTRAL DATA FOR COMPOUNDS (1-3)

H-16). In the ¹³C NMR spectrum the furan carbons resonated at δ 151.5, 141.7, 114.0, and 107.9. A quaternary oxygenated carbon was observed at δ 82.1 and two secondary oxygenated carbons were seen at δ 80.6, and 74.7 representing C-5, C-7 and C-1, respectively. An acetate carbonyl appeared at δ 168.7, while a carboxylic acid moiety resonated at δ 174.5. The full ¹H and ¹³C NMR assignments were made on the basis of interpretation of HSQC, HMBC, and ¹H-¹H COSY spectral data. The HSQC spectrum showed that the oxymethine proton at δ 4.95 (t, J = 2.9 Hz, H-1) was directly attached to the carbon at δ 74.7 (C-1). The HMBC cross-section for H-1 showed correlations to C-1', C-3, and C-5, which placed the acetate at C-1). Similarly, the HMBC data supported placement of the hydroxy group at C-7 and the carboxylic acid moiety at C-14. An analysis of coupling constants indicated that the substituent at C-1 was α -oriented while the C-7 hydroxy group was β -oriented. The ³J_{HH} for H-8 and H-14 was 13.3 Hz, indicating that H-14 was α-oriented. Strong T-ROESY cross-peaks from H-14 to H-7 and H-9, confirmed this stereochemistry. Accordingly, compound 1 was assigned as

 1α -acetoxy- 5α , 7β -dihydroxy-12,16-epoxycassa-12,15-dien-17 β -oic acid. The trivial name proposed for compound **1** is 17-*O*-demethylbonducellpin C.⁵

6			7		
Position	δc	$\delta_{\rm H}$ (mult. JHz)	δc	δ _H (mult. JHz)	
1	30.2	<1.50> ^a (m)	32.4	1.86 (m)	
				1.95 (m)	
2	18.9	1.52 (m)	19.4	1.64 (m)	
		1.77 (m)		2.04 (m)	
3	31.9	1.59 (m)	31.9	1.75 (m)	
		1.93 (m)		2.00 (m)	
4	49.1		48.6		
5	77.6		75.5		
6	30.3	1.89 (m)	25.4	2.21 (m)	
		2.37 (m)		2.54 (m)	
7	25.0	2.27 (m)	23.5	$<2.72>^{a}$ (m)	
		2.67 (m)			
8	118.9		124.4^{b}		
9	44.6	3.15 (m)	145.6		
10	45.6		43.7		
11	20.8	<2.80> ^a (m)	103.7	6.64 (s)	
12	149.2		158.3		
13	118.5		124.3^{b}		
14	126.9		132.7		
15	106.8	6.25 (d, 1.9)	29.2	$<3.12>^{a}$ (m)	
16	140.5	7.19 (d, 1.9)	70.9	$<4.53>^{a}$ (m)	
17	14.4	1.90 (m)	16.3	2.14 (s)	
18	15.1	0.70 (s)	27.0	1.10 (s)	
19	177.3		177.3		
20	23.9	1.19 (s)	23.8	1.30 (s)	
OMe	51.6	3.64 (s)	51.6	3.68 (s)	

TABLE 2. NMR SPECTRAL DATA FOR COMPOUNDS (6-7)

^{*a*} Value for an incompletely resolved methylene group.

^b Assignments may be reversed.

The ¹H NMR data for compound **2**, $C_{20}H_{30}O_3$, showed two tertiary methyl groups at δ 1.01 and 1.03 and a secondary methyl group at δ 1.01 (d, J = 7.0 Hz, H-17). Signals for a 2,3-disubstituted furan ring resonated at δ 6.18 (d, J = 1.8 Hz, H-15) and 7.22 (d, J = 1.8 Hz, H-16), while a pair of oxymethylene protons occurred at δ 3.65 (d, J = 11.0 Hz, H-19) and 3.92 (d, J = 11.0 Hz, H-19). HMBC correlations from these oxymethylene protons to C-3, C-4, C-5 and C-20 and conversely from the C-20 methyl protons to C-3, C-4, C-5, and C-19 indicated that the oxymethylene group was geminal to the C-20 methyl group and attached to C-4. Compound **2** was thus assigned as 12,16-epoxy-5 α -hydroxycassa-12,15-dien-19-ol and the trivial name proposed for compound **2** is 7-dehydroxycaesaldekarin I.⁸

Compound **3** has the molecular formula $C_{20}H_{26}O_5$ as established by HREIMS. The ¹H NMR data showed two tertiary methyl groups at δ 0.89 and 1.19, and a methoxy group resonated at δ 3.69. A signal for a C-17 secondary methyl group was notably absent. The ¹³C NMR spectrum showed signals for twenty carbons including signals for two carbonyl carbons at δ 196.1 and 177.2 corresponding to a C-14 ketone functionality and the C-19 methyl ester, respectively. HMBC correlations from a methine proton at δ 2.33 (m, H-8) to the C-14 carbonyl carbon supported its placement. Compound **3** was assigned as methyl-12,16-epoxy-5 α -hydroxynorcasa-12,15-dien-14-one-19-carboxylate. This is the first example of a norcassane diterpene being isolated from *C. bonduc*. Norcaesalpins A and B possessing 17-norcassane skeletons and norcaesalpin C possessing a 16-norcassane skeleton were isolated from *C. crista* seed kernels.¹⁰ Accordingly, the trivial name proposed for compound **3** is norcaesalpin D.

The known cassane diterpenoids caesaldekarin C (4), F (5), and J (8) were identified by comparison to literature data,^{7-8,11} During NMR data acquisition of compound 5, the sample underwent acid-catalyzed rearrangement to compound 6, and subsequently to compounds 7 and 8. This, no doubt, was due to the traces of acid that are usually present in deuterated chloroform. The structures for compounds 6 and 7 were in complete accord with the 2D NMR and mass spectral data. The ¹H and ¹³C assignments are shown in Table 2. Compounds 4, and 5 showed modest cytotoxic activity against a number of cancer cell lines (Table 3), with compound 5 showing the best activity with an IC₅₀ value of 5.2 µg/mL against the breast cancer cell line MCF7.

Panel	Cell	Comp IC ₅₀ µ	oound 1g/mL
		4	5
Leukemia	SR	7.7	9.0
Non-small cell lung cancer	NCI-H460	9.3	10.4
Colon cancer	HCT-116	9.7	9.4
Colon cancer	HT-29	8.3	7.2
Breast cancer	MCF7	8.7	5.2

TABLE 3. CYTOTOXIC ACITVITY FOR COMPOUNDS 4-5

EXPERIMENTAL

General Experimental Procedures. Melting points were determined using a Fisher/Johns melting point apparatus. Optical rotations were measured on a Perkin-Elmer 341 polarimeter with Na 589 nm at 20 °C. UV spectra were recorded on a HP8452A diode array spectrophotometer and IR spectra were recorded on a Nexus 670 FT-IR spectrophotometer. NMR spectra were recorded on a Varian UNITY 500 MHz spectrometer in CDCl₃ with TMS as internal standard. The High- and Low-resolution EIMS were recorded on a Micromass 70-250S (double focusing) mass spectrometer at an ionizing voltage of 70 eV. Flash column chromatography was performed using Merck Grade 9385 silica gel 60 (230-400 mesh). TLC was performed using precoated silica gel plates of 0.2 mm thickness; the plates were visualized by spraying with Ehrlich's reagent and warming.

Plant Material. *C. bonduc* was collected from the East Coast Road, St. Andrew in February, 2004. Professor Sean Carrington identified the plant as a genuine sample of *Caesalpinia bonduc* and a voucher specimen, JSR2, is maintained in the National Herbarium (BAR) located on the Campus.

Extraction and Isolation. The air-dried roots (150 g) were ground in MeOH (3 L) and left to soak for one week. The roots were filtered and the filtrate was concentrated *in vacuo* a yield a crude extract (10 g). The crude extract was suspended in MeOH/H₂O, 9:1 (200 mL) and extracted with CH_2Cl_2 (3 x 150 mL). The crude CH_2Cl_2 extract was reduced and suspended in MeOH/H₂O, 9:1 (200 mL) and defatted with hexane (3 x 150 mL). Water (100 mL) was added and the aqueous layer was re-extracted with CH_2Cl_2 to give a final CH_2Cl_2 extract (5.50 g). The CH_2Cl_2 extract (5.50 g) was chromatographed on silica gel using increasing proportions of acetone-hexane solvent systems, starting with 10% acetone. Forty-two fractions (75 mL) were collected. The 2.5 % acetone fractions afforded compound **4** (56 mg) as colorless rectangular plates while the 5 and 15% acetone fractions afforded compound **5** (114 mg) and **1** (15 mg), respectively, also in crystalline form. Subsequent concentration of the 15% acetone fractions *in vacuo* followed by preparative reversed-phase recycling HPLC in chloroform gave additional compound **1** (20 mg) and compound **2** (7 mg). Preparative reversed-phase HPLC on the 10 % acetone fractions gave compound **3** (10 mg). A sample of compound **5** rearranged during spectral data acquisition to compound **6**, which subsequently rearranged to compounds **7** and **8**.

17-O-Demethylbonducellpin C (1). Obtained as colorless needles (acetone/n-hexane): mp 145-147 °C; [α]_D²⁰ +52.3° (*c* 1.28, MeOH); UV (MeOH) λ_{max} nm (log ε): 236 (2.39); IR ν_{max} (KBr: 3449, 1774, 1736, 1236, 934, 732) cm⁻¹; ¹H-NMR and ¹³C-NMR data, Table 1; EIMS *m/z* (rel. int.): 405 [M-H]⁺ (10), 328 (100), 174 (54), 146 (64), 131 (48), 109 (50), 91 (49); HREIMS m/z 405.1914 (calcd. for C₂₂H₂₉O₇, 405.1913).

7-Dehydroxycaesaldekarin I (2). White amorphous solid; $[\alpha]_D^{20}$ +24.0° (*c* 0.20, MeOH); UV λ_{max} (MeOH) nm (log ε): 204 (2.42); IR ν_{max} (film) cm⁻¹: 3454; ¹H-NMR and ¹³C-NMR data, Table 1; EIMS *m/z* (rel. int.): 318 [M]⁺ (2), 119 (100), 91 (33); HREIMS *m/z* 318.2192 (calcd. for C₂₀H₃₀O₃, 318.2195).

Norcaesalpin D (3). White amorphous solid; $[\alpha]_{D}^{20}$ +41.9° (*c* 0.21, MeOH); UV λ_{max} (MeOH) nm (log ϵ): 206 (3.41), 260 (3.07); IR ν_{max} (film) cm⁻¹: 3423, 1647; ¹H-NMR and ¹³C-NMR data, Table 1; EIMS *m/z* (rel. int.): 346 [M]⁺ (55), 314 (100), 147 (64), 135 (58), 64 (45); HREIMS *m/z* 346.1788 (calcd. for C₂₀H₂₆O₅, 346.1780).

ACKNOWLEDGEMENTS

We would like to thank the National Cancer Institute where the anti-cancer testing was performed and Dr. A.Young of the University of Toronto for the mass spectrometry data.

REFERENCES

- 1. S. Carrington, 'Wild Plants of Barbados', Macmillan Press, London, 1993; p. 37.
- D. W. Nellis, 'Seashore Plants of South Florida and the Caribbean', Pineapple Press, Sarasota, 1994; pp. 62-63.
- 3. N. Ghatak, Proc. Acad. Sci. Agra and Oudh., 1934, 4, 141.
- 4. E. Heckel and F. Schlagdenhauffen, Compt. Rend. Acad. Sci., 1886, 103, 89.
- 5. S. Peter, W. Tinto, S. McLean, W. F. Reynolds, and M. Yu, J. Nat. Prod., 1997, 60, 1219.
- 6. S. Peter, W. Tinto, S. McLean, W. F. Reynolds, and L. Tay, *Tetrahedron Lett.*, 1997, 38, 5767.
- 7. S. Peter, W. Tinto, S. McLean, W. F. Reynolds, and M. Yu, *Phytochemistry*, 1998, 47, 1153.
- D. L. Lyder, S. Peter, W. Tinto, S. M. Bissada, S. McLean, and W. F. Reynolds, *J. Nat. Prod.*, 1998, 61, 1462.
- D. L. Lyder, S. Peter, W. Tinto, S. M. Bissada, S. McLean, and W. F. Reynolds, *Heterocycles*, 1998, 48, 1465.
- 10. A. H. Banskota, F. Attamimi, T. Usia, T. Z. Linn, Y. Tezuka, S. K. Kalami, and S. Kadota, *Tetrahedron Lett.*, 2003, **44**, 6879.
- I. Kitagawa, P. Simanjuntak, T. Mahnmud, M. Kobayashi, S. Fujii, T. Uji, and H. Shibuya, *Chem. Pharm. Bull.*, 1996, 44, 1157.