HETEROCYCLES, Vol. 71, No. 5, 2007, pp. 1053 - 1058. © The Japan Institute of Heterocyclic Chemistry Received, 29th January, 2007, Accepted, 19th March, 2007, Published online, 20th March, 2007. COM-07-11012

EFFICIENT 2-AMINO-2-THIAZOLIN-4-ONES OR 2-IMINOTHIAZOLI-DIN-4-ONES FORMATION FROM THIOUREAS AND MALEIMIDES UNDER SOLVENT-FREE CONDITIONS

Tetsuro Shimo,^a Yuki Matsuda,^a Tetsuo Iwanaga,^b Teruo Shinmyozu,^b and Kenichi Somekawa^{a*}

^aDepartment of Applied Chemistry and Chemical Engineering, Faculty of Engineering, Kagoshima University, Korimoto 1-21-40, Kagoshima 890-0065, Japan

^bInstitute for Materials Chemistry and Engineering (IMCE) and Department of Molecular Chemistry, Graduate School of Sciences, Kyushu University, Hakozaki, 6-10-1, Fukuoka 812-8581, Japan

Abstract – A facile method for the construction of 2-thiazolin-4-one or thiazolidin-4-one structure is described. Condensation reactions of thiourea (**1a**) and maleimides (**2**) under solvent-free conditions gave 2-amino-2-thiazolin-4-ones (**3**) *via* Michael-type reaction, while similar reactions of *N*-substituted thioureas (**1b**-**d**) with **2** afforded 2-iminothiazolidin-4-ones (**4**). Since the solvent-free reactions of **1** with **2a** afforded **3** in good yields, the synthetic method was found to be effective from the viewpoint of green chemistry.

2-Thiazoline and thiazolidine derivatives have been reported to exibit pharmacological and biological activities, respectively. For example some 2-thiazoline derivatives present interesting anti-HIV¹ and

anti-canser² activities, while thiazolidine derivatives show insecticidal³ and fungisidal⁴ activities. The classical synthesis of these compounds has been carried out in solution reactions between thioureas and maleimides or maleic anhydride, and so on⁵ except microwave-assisted solvent-free synthesis.⁶ In continuation of our studies related to the development of the solid-state organic synthesis,⁷ we report here a simple and efficient synthetic method for 2-amino-2-thiazolin-4-ones or 2-iminothiazolidin-4-ones under solvent-free conditions.

A mixture of crystals of **1a** (0.20 mmol) and *N*-methylmaleimide (**2b**) (0.20 mmol) in a mortar was ground for 10 min with a pestle. The powder was kept at 60 $^{\circ}$ C in the glass-tube oven for 24 h. The reaction mixture was washed with acetone and filtered to give **3ab** in 59% yield (Scheme 1). Similar reaction of *N*, *N*'-diphenylthiourea (**1c)** (0.20 mmol) with maleimide (**2a)** (0.20 mmol) afforded **4ca** in 77% yield. The results of the similar reactions of **1a**-**d** with **2a**-**c** were summerized in Table 1. Since

products **3ab** and **4ca** were recrystallized from ethanol to give single crystals, the structures of **3ab** (Figure 1)⁸ and **4ca** (Figure 2)⁹ were established by X-Ray crystallographic analyses as 2-amino-2thiazolin-4-one-5-*N*-methylacetamide and (*Z*)-2-(*N*-phenylimino)-3-phenylthiazolidin-4-on-5-acetamide, respectively. It was found that the pairs of **3ab** were linked together to form planar tricyclic dimers by pairs of intermolecular hydrogen bonds between amino proton and nitrogen in the 2-thiazoline ring with H···N distance of 2.12 Å (Figure 3). The assignment of the same structures (**3** and **4**) to other 2-thiazolin-4-ones and thiazolidin-4-ones were based on their ${}^{1}H$ NMR, IR and MS spectra that were analogous to those of **3ab** and **4ca**. 10 Since intermolecular hydrogen bonds were found in **3ab** as mentioned above the chemical shifts of the amino protons at the 2-thiazoline ring were observed at lower-field (δ 8.69 and 8.90), whose chemical shifts also appeared to **3aa** and **3ac**. On the other hand, the amino protons of amido group for **4ca** were observed at higher-field (δ 7.46 and 7.54). Similar chemical shifts were also observed to **4ba** and **4bb**.

		yield(%) ^c in the solid state		yield(%) \degree in solution	
thiourea	maleimide	3 or 4	recovered 2	3 or 4	recovered 2
1a	2a	95(3aa)		96 (3aa)	2
		$15 (3aa)^d$	85 ^d	$100 (3aa)^e$	0^e
	2 _b	59 (3ab)	41	98 (3ab)	$\overline{2}$
		0^d	100 ^d	100 $(3ab)^e$	0 ^e
	2c	26(3ac)	74	97(3ac)	
		0^d	100 ^d	99 $(3ac)^e$	$_1$ e
1 _b	2a	95 (4ba)	5	94 (4ba)	6
		30 (4ba)^d	70^{d}	$86 (4ba)^e$	14 ^e
	2 _b	51 (4bb)	49	98 (4bb)	$\overline{2}$
		0^d	100 ^d	93 $(4bb)^e$	7 ^e
1c	2a	77(4ca)	23	98 (4ca)	$\mathcal{D}_{\mathcal{L}}$
		0^d	100 ^d	35 $(4ca)^e$	65 ^e

Table 1 Reactions of Thioureas (1) with Maleimides (2) in the Solid State^a and in Solution.^b

^a Equimolar mixture of **1** and **2** was heated at 60 °C for 24 h. ^b Equimolar ethanol solution (0.1 M) of **1** and **2** was heated at 60 °C for 24 h. ^c Estimated from NMR analyses based on total integral heater and **3** between **2** and **3** (or **4**). "Equimolar mixture of **1** and **2** was left at room temperature for 7d. Equimolar ethanol solution (0.1 M) of **1** and **2** was left at room temperature for 7d.

Since the solvent-free reactions of **1a**-**c** with **2a** (60 °C, 24h) afforded **3aa**, **3ab**, and **3ac** in good yields (Table 1), the synthetic method was found to be effective from the viewpoint of green

Figure 1 ORTEP drawing of **3ab**. Figure 2 ORTEP drawing of **4ca**.

chemistry. It was inferred that the molecular packings between **1a**-**c** and **2a** were similar structures to 1:1 complex crystals between 2-pyrones and maleimide using non-covalent interactions which had given highly selective $[2+2]$ cycloadducts quantitatively by photoirradiation in the solid state.⁷ The decrease in reactivity of **1a** with **2b** or **2c** compared to that of **1a** with **2a** in the solid state was estimated to be caused by the lack of additional intermolecular hydrogen bond like N-H (**2a**)···O=C observed in the 1:1 complex crystals between 2-pyrones and **2a**. The reaction mechanism was considered to proceed via Michael addition of the sulfur of 1 to 2 to afford 4 which tautomerized to give 3 in the case of 1a $(R^1 = H)$ (Scheme

2). It was estimated that the activation energies of the reactions between **1a** and **2a**-**c** were relatively lower than the similar Michael addition containing hetero atom because the reactions in ethanol proceeded to give **3aa**, **3ab**, and **3ac** quantitatively at 60 °C and even at room temperature.

Figure 3 Intermolecular hydrogen bonds in **3ab**.

REFERENCES AND NOTES

^{1.} G. Pattenden, B. Mulqueen, and J. Falek, *Tetrahedron Lett*., 1994, **35**, 5705.

- 2. G. Pattenden, C. Boden, and T. Ye, *Synlett*, **1995**, 417.
- 3. A. Hirashima, H. Tarui, E. Taniguchi, and M. Eto, *Pestic. Biochem. Physiol*., 1994, **50**, 83.
- 4. H. Naumann, H. Dehne, C. Fieseler, K. Goetzschel, M. Pallas, D. Schoenfelder, W. Mueller, W. Kochmann, K. Naumann, and W. Steinke, Ger. (East) DD 241,844, **1987** (*Chem. Abstr*., 1987, **107**, 91901m).
- 5. D. H. Marrian, *J. Chem. Soc*., **1949**, 1797; V. Balasubramaniyan, P. Balasubramaniyan, and M. J. Wani, *Proc. Acad. Sci. (Chem. Sci.)*, 1991, **103**, 621 and references cited therein; H.-G. Hahn, K. D. Nam, and H. Mah, *Heterocycles*, 2001, **55**, 1283; M. D'hooghe and N. De Kimpe, *Tetrahedron*, 2006, **62**, 513.
- 6. S. Kasmi, J. Hamelin, and H. Benhaoua, *Tetrahedron Lett*., 1998, **39**, 8093.
- 7. T. Obata, T. Shimo, M. Yasutake, T. Shinmyozu, M. Kawaminami, R. Yoshida, and K. Somekawa, *Tetrahedron*, 2001, **57**, 1531; T. Shimo, T. Uezono, T. Obata, M. Yasutake, T. Shinmyozu, and K. Somekawa, *Tetrahedron*, 2002, **58**, 6111; T. Shimo, R. Yamaguchi, Y. Odo, and K. Somekawa, *Heterocycles*, 2004, **63**, 1541; W. Wang, T. Shimo, T. Shinmyozu, T. Iwanaga, and K. Somekawa, *Heterocycles*, 2006, **68**, 1381.
- 8. X-Ray crystal data for **3ab** (C₆H₉N₃O₂S); T=113 K, Mo-Kα (Rigaku RAXSIS-RAPID imaging plate diffractometer, λ =0.71069 Å), crystal dimensions 0.48 x 0.40 x 0.20 mm³ (a colorless block crystal), a=14.1282 (4), b=4.6976 (2), c=15.6902 (4) Å, β = 108.567 (1)°, monoclinic, space group P2₁/c (#14), Z=4, μ_{MοKα}=2.96 cm⁻¹, Mr=187.22, V=987.15 (5) Å³, anode power 50 KV x 32 mA, ρ_{calc}=1.260 g/cm³, $2\theta_{\text{max}}$ =55.0°, F (000)=392.00. 9060 reflections measured, 1860 observed (I > 3.00 σ (I)), number of parameters 162. The structure was solved by direct method and was refined on SIR 92.¹⁰ Data were corrected for Lorentz polarizations. The data/parameter ratio was 11.48. R=0.026, R_w =0.037, GOF=1.25, max/min residual density $+0.26/-0.17$ $e\text{\AA}^{-3}$. **4ca** $(C_{17}H_{15}N_3O_2S)$; T=123K, crystal dimensions 0.17 x 0.04 x 0.41 mm³ (a colorless platelet crystal), a=4.6757 (8), b=9.502 (2), c=34.392 (6) Å, $\beta = 90.117$ (7)°, monoclinic, space group P2₁/c (#14), Z=4, $\mu_{M_0K_0} = 2.25$ cm⁻¹, Mr=325.38, V=1527 (1) \AA^3 , ρ_{calc} =1.414 g/cm³, F (000)=680.00. 25391 reflections measured, 3486 observed (All,

 $2\sigma \le 54.97^{\circ}$), number of parameters 208. The structure was solved by direct method and was refined on SIR 97.¹¹ The data/parameter ratio was 16.76. R=0.072, R_w=0.146, GOF=1.39, max/min residual density $+0.57/-0.62$ eÅ⁻³. All calculations were performed using the teXsan crystallographic software package of Molecular Structure Corporation.

- 9. All the new compounds gave the correct analytical and MS data. Selected spectral data are given below. **3aa**: mp 244-245 °C; ¹ H NMR (DMSO-*d6*) δ 2.37 (1H, dd, *J*=16.0, 11.6 Hz), 2.98 (1H, dd, *J*=16.0, 3.2 Hz), 4.24 (1H, dd, *J*=11.6, 3.2 Hz), 7.00, 7.48 (each 1H, s), 8.72, 8.94 (each 1H, s). IR (KBr) 3440, 3350, 3200, 1718, 1680, 1650 cm-1. **3ab**: mp 219-220 °C; 1 H NMR (DMSO-*d6*) δ 2.35 (1H, dd, *J*=16.0, 11.6 Hz), 2.55 (3H, d, *J*=4.4 Hz), 2.94 (1H, dd, *J*=16.0, 3.2 Hz), 4.23 (1H, dd, *J*=11.6, 3.2 Hz), 7.91 (1H, s), 8.69, 8.90 (each 1H, s). IR (KBr) 3310, 1675, 1635 cm⁻¹. **3ac**: mp 257-259 °C; ¹H NMR (DMSO-*d6*) δ 2.69 (1H, dd, *J*=16.4, 11.0 Hz), 3.26 (1H, dd, *J*=16.4, 3.4 Hz), 4.39 (1H, dd, *J*=11.4, 3.4 Hz), 7.05 (1H, Ph), 7.30, 7.48 (each 2H, Ph), 8.79, 9.00 (each 1H, s), 10.12 (1H, s). IR (KBr) 3280, 3210, 1670 cm-1. **4ba**: mp 186- 187 °C; ¹ H NMR (DMSO-*d6*) δ 1.06, 1.15 (each 3H, t, *J*=7.0 Hz), 2.56 (1H, dd, *J*=16.4, 10.0 Hz), 2.98 (1H, dd, *J*=16.4, 3.6 Hz), 3.22, 3.61 (each 2H, q, *J*=7.0 Hz), 4.36 (1H, dd, *J*=10.0, 3.6 Hz), 7.05, 7.49 (each 1H, s). IR (KBr) 3380, 1710, 1670 cm⁻¹. **4bb**: mp 137-140 °C; ¹H NMR (DMSO-*d6*) δ 1.05, 1.16 (each 3H, t, *J*=7.2 Hz), 2.55 (3H, d, *J*=3.6 Hz), 2.56 (1H, dd, *J*=16.0, 10.0 Hz), 2.97 (1H, dd, *J*=16.0, 3.2 Hz), 3.22, 3.53 (each 2H, q, *J*=7.2 Hz), 4.40 (1H, dd, *J*=10.0, 3.2 Hz), 7.96 (1H, s). IR (KBr) 3330, 1700, 1640 cm⁻¹. **4ca**: mp 233-236 °C; ¹H NMR (DMSO-*d*₆) δ 2.85 (1H, dd, *J*=16.6, 10.0 Hz), 3.05 (1H, dd, *J*=16.6, 3.2 Hz), 4.55 (1H, dd, *J*=10.0, 3.2 Hz), 6.85, 7.09, 7.32, 7.42, 7.51 (each 2H, Ph), 7.46, 7.54 (each 1H). IR (KBr) 3420, 3170, 1705, 1660, 1635 cm⁻¹.
- 10. A. Altomare, M. C. Burla, M. Camalli, M. Cascarano, C. Giacovazzo, A. Guagliardi, and G. Polidori, *J. Appl. Cryst*., 1994, **27**, 435.
- 11. A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, and A. G. G. Moliterni, G. Polidori, and R. Spagna, *J. Appl. Cryst*., 1999, **32**, 115.