HETEROCYCLES, Vol. 71, No. 8, 2007, pp. 1807 - 1814. © The Japan Institute of Heterocyclic Chemistry Received, 11th April, 2007, Accepted, 17th May, 2007, Published online, 18th May, 2007. COM-07-11075

NEW KEHOKORINS AND TRICHIOLS FROM THE MYXOMYCETE TRICHIA FAVOGINEA

Kousuke Watanabe,¹ Takashi Ohtsuki,¹ Yukinori Yamamoto,² and Masami Ishibashi^{*,1}

¹Graduate School of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan, and ²Ohtsu-ko, Kochi 781-5102, Japan E-mail address: <u>mish@p.chiba-u.ac.jp</u>

Abstract – Two new dibenzofurans, kehokorins D (1) and E (2), and two new sterols with a 2,6-dioxabicyclo[2.2.2]octan-3-one ring, trichiols C (3) and D (4), have been isolated from field-collected fruiting bodies of the myxomycete, *Trichia favoginea*, and their structures were elucidated by spectral analysis. Kehokorins D (1) and E (2) showed cell growth inhibition activity against HeLa cells with IC₅₀ values of 6.1 and 4.5 μ g/mL, respectively.

INTRODUCTION

During our studies on bioactive natural products from myxomycetes,^{1,2} we have reported the isolation and structural elucidation of three new dibenzofurans, kehokorins A – C (**5** - **7**),³ and two new sterols with a 2,6-dioxabicyclo[2.2.2]octan-3-one ring, trichiols A (**8**) and B (**9**),^{4,5} from field-collected samples of fruiting bodies of *Trichia favoginea* var. *persimilis* from Kochi prefecture in Japan. Recently we investigated a different material of myxomycetes identified as *Trichia favoginea*. *Trichia favoginea* var. *persimilis*, which we studied previously,^{3,4} was a variant species of *Trichia favoginea*. It was demonstrated that *Trichia favoginea* contained four different new natural products from those contained in *Trichia favoginea* var. *persimilis*. Here we describe the isolation and structural elucidation of the four new compounds, kehokorins D (**1**) and E (**2**) and trichiols C (**3**) and D (**4**). Kehokorins D (**1**) and E (**2**) showed cell growth inhibition activity against HeLa cells with IC₅₀ values of 6.1 and 4.5 µg/mL, respectively.

RESULTS AND DISCUSSION

The fruiting bodies of Trichia favoginea, collected in Kochi Prefecture, Japan, were extracted with 90 %

MeOH and 90% acetone. The combined extracts were subjected to silica gel chromatography, followed by fractionations by Sephadex LH-20 and ODS columns to give four new compounds, kehokorins D (1) and E (2) and trichiols C (3) and D (4).

Kehokorin D (1) was shown to have a molecular formula of $C_{19}H_{14}O_4$ from HRFABMS data (*m/z* 306.0894 [M]⁺, Δ +0.2 mmu). Its UV spectrum showed absorption maxima at 306 and 264 nm, indicating the presence of a conjugated or aromatic system(s), and its IR absorption band at 3420 cm⁻¹ suggested the presence of hydroxyl group(s). The ¹H and ¹³C NMR spectral data of 1 were similar to those of kehokorins A – C (5 - 7).³ The ¹³C NMR spectrum of 1 (Table 1) gave signals due to eighteen sp² carbons and one *O*-methyl carbon (δ_{C} 60.8). The ¹H NMR spectrum of 1 (Table 1) showed signals for one methoxy group at δ_{H} 4.03 (3H, s) and aromatic hydrogens on three benzene rings, which were assignable to one monosubstituted [δ_{H} 7.45 (3H, m; H-2', H-4', and H-6') and 7.55 (2H, t, *J*=7.5 Hz; H-3' and H-5')], one trisubstituted [δ_{H} 7.32 (1H, d, *J*=2.5 Hz; H-1), 6.96 (1H, dd, *J*=8.5 and 2.5 Hz; H-3), and 7.42 (1H, d, *J*=8.5 Hz; H-4)], and one pentasubstituted [δ_{H} 7.18 (1H, s; H-9)] benzenes with the aid of interpretation of the ¹H-¹H COSY and the HMBC spectra of 1. The trisubstituted benzene (ring A) was constructed by the HMBC correlations observed for H-1/C-2, H-1/C-3, H-1/C-4a, H-3/C-1, H-3/C-4a, H-4/C-9b, while the presence of the pentasubstituted benzene (ring C) was suggested by the

position	1			2		
	δ_{H}	J in Hz	δ _C	δ_{H}	J in Hz	$\delta_{\rm C}$
1	7.32	d 2.5	106.2	7.36	d 2.5	103.5
2			151.5			155.7
3	6.96	dd 8.5, 2.5	115.6	7.05	dd 8.5, 2.5	115.4
4	7.42	d 8.5	112.2	7.46	d 8.5	112.0
4a			151.4			151.4
5a			142.8			142.7
6			142.4			142.4
7			120.2			120.0
8			149.1			149.1
9	7.18	s	100.1	7.21	S	99.8
9a			125.1			126.1
9b			125.8			124.7
1'			132.5			132.6
2'	7.45	m	130.7	7.45	m	130.5
3'	7.55	t 7.5	129.3	7.55	t 7.5	129.0
4'	7.45	m	128.4	7.45	m	128.2
5'	7.55	t 7.5	129.3	7.55	t 7.5	129.0
6'	7.45	m	130.7	7.45	m	130.5
2-OMe				3.92	S	55.9
6-OMe	4.03	s	60.8	4.02	S	60.6
8-OH				4.92	S	

Table 1. ¹H and ¹³C NMR Spectral Data of Kehokorins D (1) and E (2) in CDCl₃

HMBC correlations from H-9 to C-5a, C-7, and C-8. Low-field resonance of five carbons for C-2 (δ_C 151.5), C-4a (δ_C 151.4), C-5a (δ_C 142.8), C-6 (δ_C 142.4), and C-8 (δ_C 149.1) implied that these carbons bore oxygen atoms. The methoxy group was suggested to be on C-6 from the HMBC connectivity observed from the methoxy protons (δ_H 4.03) to C-6 (δ_C 142.4), while the HMBC spectrum showed correlation from H-9 to C-9b, suggesting that ring A and ring C were connected at the C-9a and C-9b positions. The monosubstituted benzene ring (ring D) was shown to be located on the C-7 position by the HMBC correlations from H-2'(6') (δ_H 7.45) to C-7 (δ_C 120.2). Since twelve out of thirteen unsaturation equivalents were accounted for by the presence of three benzene rings, compound **1** was inferred to possess another ring, which was suggested to be an ether ring located between the C-4a and C-5a positions, constructing a dibenzofuran nucleus for the basic skeleton of compound **1**, and two remaining oxygenated carbons at C-2 and C-8 were suggested to bear hydroxyl groups. Thus, the whole structure of kehokorin D was elucidated as **1**, and this structure proved to correspond to the 4'-demethoxy derivative of kehokorin C (**7**).³

Kehokorin E (2) had a molecular formula of $C_{20}H_{16}O_4$ as shown by HRFABMS data (*m/z* 320.1047 [M⁺], Δ -0.2 mmu), having one CH₂ unit more than kehokorin D (2). The ¹H and ¹³C NMR spectral data of 2 (Table 1) as well as its UV and IR spectra were almost parallel to those of compound 1, except for the

fact that the ¹H NMR signals due to two methoxy groups [$\delta_{\rm H}$ 4.02 (3H, s) and 3.92 (3H, s)] were observed for compound **2**, while **1** had only one methoxy group. The ¹H-¹H COSY, HMQC, and HMBC data suggested that kehokorin E (**2**) had the same backbone skeleton as kehokorin D (**1**) and one hydroxyl group of **1** was replaced by a methoxy group in **2**. The HMBC spectrum of **2** showed correlations from the *O*-methyl protons [$\delta_{\rm H}$ 4.02 (3H, s) and 3.92 (3H, s)] to the sp²-quaternary carbon on C-6 ($\delta_{\rm C}$ 142.4) and C-2 ($\delta_{\rm C}$ 155.7), respectively. C-2 ($\delta_{\rm C}$ 155.7) showed HMBC correlations with not only the methoxy group but also H-1 ($\delta_{\rm H}$ 7.36, d, *J*=2.5 Hz) and H-4 ($\delta_{\rm H}$ 7.46, d, *J*=8.5 Hz). The hydroxy proton on C-8 (8-O<u>H</u>) resonated at $\delta_{\rm H}$ 4.92, which showed HMBC correlation with C-9 ($\delta_{\rm C}$ 99.8). From these results, kehokorin E (**2**) was concluded to be a 2-*O*-methyl derivative of kehokorin D (**1**).

Trichiol C (3) showed a quasi-molecular ion peak at m/z 475 (M+H)⁺ in its positive FAB mass spectrum, and its molecular formula was revealed as C₂₉H₄₆O₅ from HRFABMS data $[m/z, 475.3412, (M+H)^+, \Delta$ -1.2 mmu]. The IR absorption bands at 3420 and 1775 cm⁻¹ indicated the presence of hydroxy and carbonyl groups, and no particular UV absorption was observed for 3. Trichiol C (3) had a molecular formula with one oxygen atom more than that of trichiol A (8).^{4,5} The 1 H and 13 C NMR spectral data of trichiol C (3) (Table 2) were almost parallel to those of trichiol A $(8)^4$, except for the fact that 3 showed 1H and ^{13}C NMR signals due to one more oxymethine (δ_H 4.02 br s; δ_C 69.8) than 8. Analysis of the ¹H-¹H COSY, HMQC, and HMBC data of **3** suggested that **3** had the same backbone skeleton as **8**, containing the unique 2,6-dioxabicyclo[2.2.2]octan-3-one ring structure [for 3: $\delta_{\rm H}$ 5.73 s (H-18), 2.65 dd J=4.0 and 1.7 Hz (H-20), and 4.09 dt J=7.0 and 1.3 Hz (H-22); $\delta_{\rm C}$ 100.1 (C-18), 46.1 (C-20), 173.1 (C-21), and 72.5 (C-22)]. The ¹H-¹H COSY spectrum showed the proton connectivities from H₂-1 to H-5 (H₂-1/H-2/H-3/H₂-4/H-5) and suggested that the two oxymethine carbons were located vicinally on ring A at C-2 ($\delta_{\rm H}$ 4.02 br s; $\delta_{\rm C}$ 69.8) and C-3 ($\delta_{\rm H}$ 3.64 dt, J=11.5 and 4.0 Hz; $\delta_{\rm C}$ 72.2), which was consistent with the HMBC correlations observed from H_2 -1 (δ_H 1.12 and 2.02) to C-2 and C-3 and from H_2 -4 (δ_H 0.93 and 1.38) to C-3. Thus, trichiol C (3) was suggested to bear two secondary hydroxyl groups on C-2 and C-3, which was further confirmed by preparation of diacetate [10, FABMS: m/z 559 $(M+H)^+$; δ_H 2.00 and 2.08 (each 3H, s)] from 3 by treatment with Ac₂O and pyridine. The ¹H NMR signal of 3 due to H-2 was observed as a broad singlet, implying that the J-values between H-2 and neighboring hydrogens were small, while H-3 appeared as a doublet of triplets with J-values of 11.5 and 4.0 Hz, respectively, indicating J(H-2, H-3)=4.0 Hz, $J(H-3, H-4_{equatorial})=4.0$ Hz, and $J(H-3, H-4_{axial})=11.5$ Thus, it was suggested that H-2 was equatorial and H-3 was axial, viz. hydroxyl groups on C-2 and Hz. C-3 were β -axial and β -equatorial, respectively. From these results, the structure of trichiol C (3) was concluded as 2 β -hydroxytrichiol A.

The molecular formula of trichiol D (4) was revealed as $C_{36}H_{56}O_7$ from HRFABMS data [*m*/*z* 601.4069, (M+H)⁺, Δ –3.5 mmu], having a $C_7H_{10}O_2$ unit more than that of trichiol C (3). The ¹H and ¹³C NMR

	3		4		
positions	$\delta_{\rm H} (J \text{ in Hz})$	δδ _C	$\delta_{\rm H} (J \text{ in Hz})$	$\delta_{\rm C}$	
1	1.12 m and 2.02 m	42.7	1.25 m and 1.99 m	40.8	
2	4.02 br s	69.8	5.25 dt (11.0, 3.0)	69.7	
3	3.64 dt (11.5, 4.0)	72.2	4.81 br s	71.8	
4	0.93 m and 1.38 m	32.2	1.46 m and 1.82 m	29.2	
5	1.15 m	45.3	1.28 m	45.3	
6	1.48 m and 1.70 m	32.1	0.98 m and 1.26 m	32.0	
7	1.32 m and 1.78 m	33.9	1.30 m and 1.38 m	27.7	
8	1.67 m	34.7	1.70 m	33.9	
9	0.81 m	55.9	0.87 m	55.6	
10		35.7		35.6	
11	1.44 m and 1.68 m	21.7	1.42 m and 1.64 m	21.7	
12	1.44 m and 2.36 m	35.6	1.42 m and 2.36 m	35.4	
13		48.1		48.1	
14	1.42 m	56.6	1.45 m	56.4	
15	1.52 m (2H)	26.1	1.52 m (2H)	26.1	
16	1.62 m and 1.87 m	30.0	1.62 m and 1.86 m	30.1	
17	2.38 dd (9.5, 4.0)	36.4	2.39 dd (9.9, 3.9)	36.4	
18	5.73 s	100.1	5.70 s	100.2	
19	1.03 s (3H)	14.2	0.99 s (3H)	14.2	
20	2.65 dd (4.0, 1.7)	46.1	2.65 dd (3.9, 1.7)	46.2	
21		173.1		173.1	
22	4.09 dt (7.0, 1.3)	72.5	4.08 dt (6.9, 1.3)	72.5	
23	1.52 m and 1.70 m	31.5	1.48 m and 1.72 m	31.6	
24	1.18 m	41.6	1.18 m	41.7	
25	1.78 m	28.1	1.78 m	28.1	
26	0.82 d (7.0) (3H)	18.6	0.81 d (6.6) (3H)	18.6	
27	0.86 d (7.0) (3H)	18.7	0.87 d (7.2) (3H)	19.0	
28	1.22 m and 1.36 m	22.7	1.22 m and 1.38 m	22.5	
29	0.87 t (7.0) (3H)	11.9	0.87 t (7.0) (3H)	11.7	
1'				170.3	
2'			2.07 s (3H)	21.1	
1"				175.8	
2"			2.30 m	41.7	
3"			1.36 m and 1.63 m	26.1	
4"			0.88 t (7.3) (3H)	11.7	
5"			1.10 d (7.2) (3H)	16.3	

Table 2. ¹H and ¹³C NMR Data of Trichiol C (**3**) and Trichiol D (**4**) in CDCl₃^a

^{a)}Assignments were based on the 2D NMR (${}^{1}H{}^{-1}H$ COSY, HMQC, and HMBC) data as well as comparison with the data of trichiols A (8) and B (9).⁴

spectral data of **4** (Table 2) were almost parallel to those of compound **3**. However, signals due to one singlet (δ_H 2.07, 3H, s), one doublet (δ_H 1.10, 3H, d, *J*=7.2 Hz), and one triplet (δ_H 0.88, 3H, t, *J*=7.3 Hz) methyl group was additionally observed in the ¹H NMR of **4**, compared with that of **3**. The ¹H-¹H COSY and HMBC spectra of **4** suggested that C-2 and C-3 positions in ring A of **4** were also oxygenated as in the case of compound **3** (¹H-¹H COSY correlations: H₂-1/H-2/H-3/H₂-4/H-5; HMBC correlations: H₂-1/C-2, H₂-1/C-3, and H₂-4/C-3). However, the oxymethine protons on C-2 and C-3 resonated at a relatively lower field for **4** [δ_H 5.25 (H-2) and δ_H 4.81 (H-3); for **3**, δ_H 4.02 (H-2) and δ_H 3.64 (H-3)], implying that both of these oxymethine carbons were acylated. Analysis of the ¹H-¹H COSY, HMQC, and HMBC data of **4** suggested that these two acyl groups are acetyl and 2-methylbutanoyl groups, which

were attached at the C-2 and C-3 positions of 4, respectively, on the basis of the HMBC correlation data [for acetyl group on C-2: H-2/C-1' and H₃-2'/C-1'; for 2-methylbutanoyl group on C-3: H-3/C-1", H-2"/C-1", H-2"/C-3", H₂-3"/C-2", H₂-3"/C-4", H₃-4"/C-2", H₃-4"/C-3", H₃-5"/C-1", H₃-5"/C-2", and H₃-5"/C-3"]. From these data, it was suggested that the planar structure of 4 corresponded to a 2-O-acetyl-3-O-2-methylbutanoyl derivative of trichiol C (3), while the stereochemistry at the C-2 and C-3 positions of 4 was different from those of 3 as shown from the following observations. The oxymethine proton (H-3) appeared as a broad singlet, implying that the *J*-values between H-3 and vicinal protons were small, whereas H-2 was observed as a doublet of triplets with J-values of 11.0 and 3.0 Hz, respectively, indicating $J(H-1_{axial}, H-2)= 11.0 \text{ Hz}$, $J(H-1_{equatorial}, H-2)= 3.0 \text{ Hz}$, and J(H-2, H-3)=3.0 Hz. These findings suggested that H-2 had a β -axial orientation and H-3 was β -equatorial, which was reminiscent of the fact that H-3 of trichiol B (9),^{4,5} previously isolated from a variant species of *Trichia* favoginea var. persimilis, had a β -equatorial orientation with an α -axial acetoxy group on C-3. Thus, trichiol D (4) was revealed to be a 2-O-acetyl-3-O-2-methylbutanoyl derivative of a diastereomer at the C-2 and C-3 positions of trichiol C (3), viz. 2α -acetoxy-3-O-deacetyl-3-O-2-methylbutanovltrichiol B.^{4,5} Kehokorins D (1) and E (2) showed cell growth inhibition activity against the HeLa human epithelial carcinoma cell line with IC₅₀ values of 6.1 and 4.5 µg/mL, respectively, while they both showed only weak inhibition activity against human colon carcinoma DLD1 cells (IC₅₀: >8 μ g/mL). Trichiol C (3) showed a moderate cell growth inhibition activity against HeLa cells with an IC₅₀ value of 14.1 µg/mL, but trichiol D (4) was inactive (IC₅₀: >25 μ g/mL).

EXPERIMENTAL

General Procedures Optical rotation was measured with a JASCO P-1020 polarimeter. IR spectra were measured using a Hitachi 260-10 infrared spectrophotometer. NMR spectra were recorded on JEOL JNM ecp600 spectrometers. HR-FAB-MS were acquired on a JMS HX-110 mass spectrometer. **Organism** The fruiting bodies of *Trichia favoginea* were collected in Kochi Prefecture, Japan, in October-November 2004. Voucher specimens (#27213, 27215, and 27398) are maintained by Y. Y. (Ohtsu-ko, Kochi).

Extraction and isolation The air-dried fruiting bodies of *Trichia favoginea* (6.5 g) were extracted with 90% MeOH (140 mL x 3) and 90% acetone (120 mL x 1) at rt. The combined extracts (0.5 g) were subjected to silica gel column chromatography (column A; 25 x 200 mm) with gradient elution of 0-100% MeOH in CHCl₃. A fraction (18 mg) of column A eluted with CHCl₃/MeOH (98:2) was further separated by Sephadex LH-20 column chromatography (15 x 60 mm) eluted with CHCl₃/MeOH (1:1) to give kehokorin D (1, 1.0 mg). Another fraction (25 mg) of column A eluted with CHCl₃/MeOH (98:2) was further purified by Sephadex LH-20 column (15 x 580 mm) eluted with MeOH, followed by ODS

column chromatography (8 x 300 mm; 85% MeOH) and Sephadex LH-20 column chromatography (8 x 350 mm) eluted with CHCl₃/MeOH (1:1) to give trichiol C (**3**, 1.5 mg). A fraction (8.5 mg) of column A eluted with 100% CHCl₃ was further purified by Sephadex LH-20 column (column B; 15 x 600 mm) eluted with CHCl₃/MeOH (1:1) to give kehokorin E (**2**, 2.8 mg). A fraction of column B (1.7 mg) was further purified by silica gel column chromatography eluted with hexane/EtOAc (10:1) to afford trichiol D (**4**, 0.9 mg).

Kehokorin D (1): amorphous powder; UV λ_{max} (MeOH) 306 (ϵ 18000) and 264 (ϵ 11000); IR (film) ν_{max} 3420 and 1610 cm⁻¹; ¹H and ¹³C NMR (Table 1); FABMS *m/z* 306 (M⁺); HRFABMS (positive) *m/z* 306.0894 [calcd for C₁₉H₁₄O₄, (M⁺) 306.0892].

Kehokorin E (2): amorphous powder; UV λ_{max} (MeOH) 306 (ε 23000) and 263 (ε 14000); IR (film) v_{max} 3420 and 1610 cm⁻¹; ¹H and ¹³C NMR (Table 1); FABMS *m/z* 321 (M+H)⁺; HRFABMS (positive) *m/z* 320.1047 [calcd for C₂₀H₁₆O₄, (M⁺) 320.1049].

Trichiol C (3): amorphous powder; $[\alpha]_{D}^{26}$ +85 (*c* 0.1, MeOH); IR (film) ν_{max} 3420 and 1775 cm⁻¹; ¹H and ¹³C NMR (Table 2); FABMS *m*/*z* 475 (M+H)⁺; HRFABMS (positive) *m*/*z* 475.3412 [calcd for C₂₀H₁₇O₄, (M+H)⁺ 475.3424].

Trichiol D (4): amorphous powder; $[\alpha]_D^{26}$ +36 (*c* 0.1, MeOH); IR (film) v_{max} 1775, 1740, and 1655 cm⁻¹; ¹H and ¹³C NMR (Table 2); FABMS *m*/*z* 601 (M+H)⁺ and 639 (M+K)⁺; HRFABMS (positive) *m*/*z* 601.4069 [calcd for C₃₆H₅₇O₇, (M+H)⁺ 601.4104].

Acetylation of Trichiol C (3). Trichiol C (3, 0.7 mg) was treated with Ac₂O (0.1 mL) and pyridine (0.1 mL) at rt overnight. Evaporation of the reagent by a stream of nitrogen followed by purification with silica gel column chromatography (8 x 80 mm; hexane/EtOAc, 3:1) afforded diacetate (10, 0.5 mg): ¹H NMR (CDCl₃) $\delta_{\rm H}$ 5.27 (1H, br s, H-2), 4.81 (1H, dt, *J*=11.0 and 3.0 Hz; H-3), 4.08 (1H, dt, *J*=7.0 and 1.3 Hz; H-22), 2.65 (1H, dd, *J*=4.2 and 1.7 Hz; H-20), 2.40 (1H, dd, *J*=9.8 and 3.7 Hz; H-17), 2.08 and 2.00 (each 3H, s; CH₃CO- x 2), 1.00 (3H, s; H₃-19), 0.87 (3H, t, *J*=7.0 Hz; H₃-29), 0.86 (3H, d, *J*=7.0 Hz; H₃-27), 0.82 (3H, d, *J*=7.0 Hz; H₃-26); FABMS *m*/*z* 559 (M+H)⁺.

Cell Growth Inhibitory Activity The procedure of the assay was the same as described previously.⁷ Briefly, HeLa cells (6×10^3 cells) were treated with different concentrations of each isolated compound for 24 h at 37 °C. After the medium containing the isolated compounds was removed, cell growth inhibitory activity was determined by the FMCA method⁸ using a fluorescence platereader.

ACKNOWLEDGEMENTS

We thank Ms. Atsumi Osuga for technical assistance. This work was supported by a Grant-in-Aid for Scientific Research on Priority Areas (18032020) from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, and by a Grant-in-Aid from the Terumo Lifescience

Foundation and Venture Business Laboratory of Chiba University.

REFERENCES AND NOTES

- 1. M. Ishibashi, Med. Chem., 2005, 1, 575.
- 2. M. Ishibashi, 'Studies in Natural Products Chemistry,' Vol. 29, ed. by Atta-ur-Rahman, Elsevier, Amsterdam, 2003, pp. 223-262.
- 3. K. Kaniwa, T. Ohtsuki, Y. Yamamoto, and M. Ishibashi, Tetrahedron Lett., 2006, 47, 1505.
- 4. K. Kaniwa, T. Ohtsuki, T. Sonoda, Y. Yamamoto, M. Hayashi, K. Komiyama, and M. Ishibashi, *Tetrahedron Lett.*, 2006, **47**, 4351.
- 5. Here we rename trichiol (8)⁴ as trichiol A and 3-epitrichiol acetate (9)⁴ as trichiol B.
- 6. The IC₅₀ values of kehokorins A (5) ~ C (7) and trichiol A (8) and B (9) against the HeLa cells were 1.5, 7.2, >8.4, 6~12, and >12.5 μ g/mL, respectively.^{3,4}
- 7. T. Ohtsuki, M. Sato, T. Koyano, T. Kowithayakorn, N. Kawahara, Y. Goda, and M. Ishibashi, *Bioorg. Med. Chem.*, 2006, 14, 659.
- 8. R. Larsson, J. Kristensen, C. Sandberg, and P. Nygren, Int. J Cancer, 1992, 50, 177.