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Abstract – Novel homologated aminoglycosides having a seven-membered ring 

were designed and synthesized by treatment of 5-keto arbekacin with 

diazomethane in CH2Cl2-Et2O. The ring-expanded arbekacin analogue showed 

good antibacterial activity against Staphylococcus aureus and Escherichia coli 

including aminoglycoside-resistant bacterial strain. 

Aminoglycoside antibiotics are a clinically important class of natural products with antibacterial activity 

against Gram-positive and Gram-negative bacteria.1 The aminoglycosides bind specifically to the A-site 

of the decoding region of the 16S bacterial ribosome RNA (rRNA) and interfere with protein biosynthesis, 

leading to bacterial cell death.2 The recent studies of X-ray crystal structures of several aminoglycosides 

complexed to the rRNA suggest that the central 2-deoxystreptamine ring of aminoglycoside structures 

play a crucial role in the interactions with 16S rRNA.3 

Recently ring-expanded analogues of natural pyranose sugars have been reported as new efficient tools 

for the investigation of protein-carbohydrate interactions.4 Further, the ring-expanded carbohydrate 

analogues are useful for the development of glycosidase inhibitors and the investigation of glycosidase 

mechanisms.4c Based on these findings, we have been interested in the ring-expansion of the 

2-deoxystreptamine ring of aminoglycosides in our continuous search for novel aminoglycosides with 

efficient antibacterial activity.5 However, to the best of our knowledge, ring-expanded aminoglycosides 

have not been reported so far. Herein, we disclose the first example of the synthesis of 

2-deoxystreptamine ring-expanded aminoglycosides and its antibacterial activity. 
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Scheme 1. Reagents and conditions: a) Moz-S, Et3N, H2O, IPA, THF, 60 ℃, 79%; b) BzCl, Py, rt, 97%; 
c) DMSO, Ac2O, rt, 99%; d) excess CH2N2, 1:1 MeOH/Et2O, 0 ℃, 86%; e) (1) 1M NaOMe, MeOH, rt; 
(2) 90%TFA, 5 41%; f) 1N NaOH, MeOH, CHCl3, rt, 73%; g) (1) CsOAc, DMF, 80 ℃; (2) 1N NaOH, 
H2O, rt; (3) 90% TFA, rt, 6 76%; (h) (1) excess Me2NH, H2O, EtOH, 80 ℃; (2) 1M NaOMe, MeOH, rt; 
(3) 90% TFA, 7 79%. 
 

We focused on arbekacin6 (ABK, 1) as a starting material and attempted expansion of the 

2-deoxystreptamine ring of 5-keto ABK 3 by treatment with diazomethane.7 Compound 3, having a 

5-keto group, was prepared from 1 in three steps (Scheme 1). p-Methoxybenzyloxycarbonyl8 (Moz) 

protection of the amino groups of 1 with       

S-p-methoxybenzyloxycarbonyl-4,6-dimethyl-2-mercaptopyrimidine (Moz-S)9 followed by treatment of 

the resulting penta-N-Moz arbekacin with benzoyl chloride (BzCl) afforded 2, which was treated with 

DMSO-Ac2O10 to provide the 5-keto 3. The first attempt to expand the deoxystreptamine ring of 3 by 

treatment with diazomethane7 in MeOH-Et2O11 provided only the undesired epoxide 4 in good yield as a 

single stereoisomer; no ring-expanded product was obtained (Scheme 1). We assume that the selective 

formation of epoxide in this reaction is attributable to the pyranosyl substituents at positions C4 and C6 of   
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                       Figure 1. Selective ROESY correlations of 5. 
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ketone 3. 12 To confirm the configuration of 4 at position C5, the epoxide was converted into the 

ring-opened derivative. Thus, treatment of 4 with 1M NaOMe followed by deprotection of the Moz 

groups with trifluoroacetic acid (TFA) afforded 5-methoxymethyl ABK 5.13 The results of ROE 

experiments on 5 indicated that the 5-OH of 5 was equatorial in orientation and the 5-methoxymethyl 

group was axial in configuration (Figure 1). Therefore, the configuration of 4 at position C5 was 

determined to be as illustrated in Scheme 1. Presumably, nucleophilic attack of diazomethane on the 

ketone at position C5 would take place stereoselectively from the less hindered α face to afford 4. Further, 

we attempted several ring opening reactions to investigate the reactivity of the epoxide 4. Deprotection of 

the Bz groups of 4 with 1N NaOH followed by treatment with CsOAc at 80 ℃ in DMF gave 

penta-N-Moz-5-epiacetoxymethyl ABK. Then, stepwise deprotections of the Ac and Moz groups gave the 

5-hydroxymethyl ABK 6.13 While, cleavage of epoxy group of 4 with excess dimethylamine at 80 ℃ 

followed by stepwise deprotections of Bz and Moz groups provided the 5-dimethylaminomethyl ABK 

7.13 These results suggested that the epoxide 4 would be a useful intermediate for preparation of various 

5α-substituted aminoglycoside derivatives. 
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Scheme 2. Reagents and conditions: a) excess CH2N2, 1:1 CH2Cl2/Et2O, rt, 8 + 9 36%, 4 40%; b) 
MeONH2 ·HCl, Py, 60 ℃, a mixture of oximes 74%; c) (1) 1M NaOCH3, MeOH, CHCl3, rt; (2) 90% TFA, 
rt, 10 65%, 11 16%. 
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After considerable experimentation, it was found that the product ratio of the ring-expanded compounds 

to the undesired epoxide was significantly influenced by the choice of solvent. Thus, ring expansion was 

achieved by treatment of 3 with diazomethane in the aprotic solvent mixture, CH2Cl2-Et2O, to give the 

desired 8 and 9 as an inseparable regioisomeric mixture in 36% yield, and the epoxide 4 in 40% yield 

(Scheme 2). It is assumed that use of CH2Cl2 in place of MeOH resulted in a decrease in the relative rate 

of the reaction to form the thermodynamically stable ring-expanded product.11,12 After the keto group of 

the mixture of 8 and 9 was converted into the apparently stable oxime in 74% yield, by treatment with 

hydroxylamine, deprotection of the Moz and Bz groups afforded the ring-expanded 1013 and 1113 in 65% 

and 16% yield respectively.14 These results suggested that the ring expansion of 3 with diazomethane in 

CH2Cl2-Et2O proceeds stereoselectively to afford 8 as the major isomer. Presumably, the selective 

formation of 8 is explained by considering the relative stabilities of the conformations of the 

intermediates A and B (Figure 2).15 
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Figure 2. Pathways to ring-expanded products via intermediates A and B.  

 

The antibacterial activity of 10 was tested against several strains. Interestingly, the 2-deoxystreptamine 

ring-expanded arbekacin 10 showed good antibacterial activity against Staphylococcus aureus 209P JC-1, 

S. aureus RN4220 and Escherichia coli JM109 (minimum inhibitory concentrations (MICs) 2, 8, and 4 

μg/mL, respectively).16 Further, 10 retained activity against S. aureus RN4220/pCR1948, which is a 

aminoglycoside-resistant strain, expressing aminoglycoside-modifying enzyme AAC(6’)-APH(2”)1,6,17 

(MIC 16 μg/mL). These results seem to indicate that 2-deoxystreptamine ring-expanded arbekacin would 

be an attractive lead compound for development of novel aminoglycosides. 
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In summary, the novel ring-expanded aminoglycoside synthesized in this study represents a new class of 

aminoglycoside antibiotic, which is active against E. coli and S. aureus including 

aminoglycoside-resistant bacterial strain. The design would be useful for future development of novel 

aminoglycosides with good antibacterial activity, while, the undesired epoxide 4 would be a useful 

intermediate for preparation of various 5α-substituted aminoglycoside derivatives. The structure-activity 

relationship studies of the 2-deoxystreptamine ring-expanded aminoglycosides are currently in progress. 
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