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Abstract – An efficient and convergent process is described for the first 

preparation of new phenylpropanoid lignans, (±)-aglacin K stereoisomer and 

(±)-arborone, isolated from the stem bark of Algaia cordata and the stems of 

Piper arborescens, respectively. The key substituted tetrahydrofuran rings were 

constructed through chemoselective hydrogenation of functionalized lactol 

derivatives, which were in turn elaborated via requisite reverse stereoselective 

addition of organometallic reagent to the amide-aldehyde intermediates derived 

from a terpene lactone.

The lignan class of natural products displays a wide variety of constitution based on phenolic and 

O-heterocyclic substructures1 and an equally wide range of biological activities. Especially, those 

attributed to the tetrahydrofuran series are diverse and include many activities such as antitumor 

promotion, antiallergic, antihypertensive, antimitotic, stress reducing, cAMP phosphodiesterase inhibitory, 

Ca2+ and PAF antagonist, insecticidal and toxicity enhancement activities2 together with use as 

constituents of folk medicines.1,3 Due to their interesting activity as well as unique structural 

characteristics, they have been the subject of an extensive synthetic effort which has culminated in 

numerous syntheses.4 However, most methods were concerned with the construction of 2,5-disubstituted 

furans, while few focused on tri- and tetrasubstituted derivatives,5 although the synthesis of this type of 

compounds includes interesting and often unsolved problems of stereocontrol. In spite of these facts, they 

serve as good templates for the construction of pharmacologically important furanoid groups and exhibit 

various degrees of potency and specificity.6 We have also recently succeeded in the development of novel 

and stereoselective syntheses of biologically active furanoid natural products such as methyl piperitol 
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(1),7a sesaminone (2a) (trans,trans structure), its derivative (2b)7b (trisubstituted tetrahydrofurans, 

respectively), virgatusin (3)7c and goniothalesdiol (4)7d (tetrasubstituted tetrahydrofuran, respectively) 

employing Lewis acid induced deoxygenation of the lactol precursors exploited in this laboratory (Figure 

1). On the other hand, new phenylpropanoid lignans, aglacin K (5) and arborone (6) (cis,trans structure), 

possessing a characteristic substitution pattern such as a di- or trisubstituted tetrahydrofuran ring have 

been isolated in 2004 from the stem bark of Algaia cordata Hiern collected from Kalimantan, Indonesia 

as one of the chemical constituents,8a and in 2005 from the stems of Piper arborescens Roxb. 

(Piperaceae) mainly distributed throughout Lanyu Island of Taiwan and the Philippines,8b respectively. 

The relative stereochemistry of 5 and 6 were determined from 1H NMR and 13C NMR spectra assisted 

with 2D NMR experiments. Since these two compounds are expected to be a rich source of compounds 

that might be useful for the development of new pharmaceutical agents containing insecticidal, cytotoxic, 

and potent anti-platelet aggregation activities, these would capture hereafter the interest as attractive and 

useful targets for synthesis. With these considerations in mind, we wish to communicate the details of the 

first and convergent syntheses of (±)-aglacin K (5) stereoisomer and (±)-arborone (6) by means of 

requisite reverse stereoselective addition of organometallic reagent followed by chemoselective 

hydrogenation of functionalized lactol derivatives elaborated from a common terpene lactone. 
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Figure 1. Furan Lignans 

 
As shown in Scheme 1, the starting terpene lactones 7 prepared from dihydroxyacetone dimer according 

to our procedure9 were converted to the erythro-amide alcohols 8 as a predominant product together with 

minor isomers threo-9 via the subsequent reactions of aminolysis, Swern oxidation followed by the 

nucleophilic addition of organolithium reagent.10 These were then submitted to the secondary 

alcohol-protection, deprotection of the primary alcohol part, and cyclization sequence to give the 

1-substituted lactone derivatives 10.7a Coupling reaction of 10 thus obtained with 

3,4,5-trimethoxy-benzaldehyde in the presence of LiHMDS at low temperature provided the 2,2’-trans 

adducts 11 as a sole product in 93% (11a) and 94% (11b), respectively.11   
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Scheme 1 Reagents and conditions: (a) i, Me2NH, MeOH;  ii, (COCl)2, DMSO, THF then Et3N, -78 to 45 °C; iii, 
5-bromo-1,2,3-trimethoxybenzene, BuLi, Et2O, -78 °C; 33% (three steps) (8a), trace (9a); 39% (three steps) (8b), 2.5% 
(9b); (b) for (8a): i, BnBr, Ag2O, AcOEt, 86%; ii, Bu4NF, THF, 98%; iii, p-TsOH, toluene, 93% (10a); for (8b): i, 
TIPSOTf, 2,6-lutidine, CH2Cl2, 92%; ii, H2, 5% Pd/C, MeOH, 90%; iii, PPTS, toluene, 45 °C; 82% (10b); (c) 
3,4,5-trimethoxybenzaldehyde, LiHMDS, THF; -78 °C; 93% (11a) (trans only); 94% (11b) (trans only). 
 
With these compounds in hand, we focused our research on the synthesis of aglacin K (5) (Scheme 2). To 

begin with, we investigated the conversion of this lactone ring to the corresponding tetrahydrofuran 

skeleton through Lewis acid-mediated hydrogenation of its lactol intermediate. Whereas direct 

hydrogenation of those lactols derived from DIBAL-H reduction of 11 as well as their MOM-hydroxyl 

protected derivatives with Et3SiH in the presence of BF3OEt2 disappointingly yielded the inseparable 

mixture even at low temperature,12 use of the diacetates 12 fortunately brought about the chemoselective 

hydrogenation products, which were hydrolyzed to give the desired tetrahydrofurans 13 as a predominant 

product. After TPAP-NMO oxidation13 of 13, the obtained ketone 14a was at first hydrogenated with 

Pd/C under H2 atomosphere to afford the diol 15 as the main product in moderate yield ascribed to 

over-reduction of the carbonyl function. However, 15 was interestingly identified to be the 

C2-symmetrical structure based on its spectral data.14 On the other hand, reaction of 14b with Bu4NF 

smoothly desilylated and accomplished the first synthesis of (±)-aglacin K (5) stereoisomer in 74% 

isolated yield. The spectral data of synthetic 5 were slightly different from those of the reported natural 

product.8a,15 Since the stereochemical features of 5 have been unambiguously characterized through our 

synthetic process described here, we thus concluded that the unknown relative configurations of natural 

aglacin K should be (1S*,2S*,2’S*). 

In light of the above outcome, we turned our attention to the synthesis of the next target compound, 

(±)-arborone (6),8b which contains the similar carbon framework to that of sesaminone (2a), but with the 

relatively different stereochemistry. When the trans-lactone 16 obtained from coupling reaction of the 

common monoterpene lactone 7b with 3,4,5-trimethoxy-benzaldehyde16 was successively subjected to 

reactions of aminolysis and Swern oxidation after MOM-protection followed by the nucleophilic addition 

of organolithium reagent in a similar manner, it reversely provided the desired threo-type of amide 

alcohol 17 in contrast to the reaction giving erythro-8 (shown in Scheme 1) as a single isomer.17   After 
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Scheme 2 Reagents and conditions: (a) i, DIBAL-H, toluene, -78 °C; ii, Ac2O, Et3N, CH2Cl2; 60% (two steps) (12a); 
57% (two steps) (12b); (b) i, Et3SiH, BF3OEt, CH2Cl2; ii, K2CO3, MeOH; 65% (two steps) (13a); 63% (two steps) (13b); 
(c) TPAP, NMO, MS4A, CH2Cl2; 75% (14a); 88% (14b); (d) H2, 5% Pd/C, MeOH; 41% (from 14a); (e) Bu4NF, THF; 
74% (from 14b). 
 
cyclization to the lactone 18, the beneficial synthetic sequence consisting of DIBAL-H reduction, 

acetylation, and the chemoselectively reductive deoxygenation followed hydrolysis was applied to this 

synthetic process, fortunately leading to the trisubstituted furan 19 containing the desired relative 

configuration sequence in satisified yield (Scheme 3). Finally, the ketone 20 oxidized under Swern 

oxidation conditions was submitted to deprotection with Pd (black) to complete the first synthesis of 

(±)-arborone (6) in 85% yield. The spectral data of synthesized 618 were completely identical to those of 

the reported values in all respects.8b  
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Scheme 3 Reagents and conditions: (a) 3,4,5-trimethoxybenzaldehyde, LiHMDS, THF, -78 °C; 96%; (b) i, MOMCl, 
i-Pr2NEt, CH2Cl2; 93%; ii, Me2NH, MeOH; 88%;  iii, (COCl)2, DMSO, THF then Et3N, -78 to 45 °C; iv, 
5-bromo-1,2,3-trimethoxybenzene, BuLi, Et2O, -78 °C; 59% (two steps); (c) p-TsOH, toluene; 85%; (d) i, DIBAL-H, 
toluene, -78 °C; 89%; ii, Ac2O, Et3N, CH2Cl2; 98%; iii, Et3SiH, BF3OEt2, CH2Cl2, -78 to 40 °C; 77%; iv, K2CO3, 
MeOH; 80%; (e) (COCl)2, DMSO, THF then Et3N, -78 to 45 °C, 84%; (f) Pd(black), HCO2H, 47 °C; 85 %. 
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In summary, this work constitutes the first and convergent syntheses of new phenylpropanoids, 

(±)-aglacin K stereoisomer and (±)-arborone, by means of requisite reverse stereoselective addition of 

organolithium reagent followed by chemoselective hydrogenation of functionalized lactol derivatives, 

which were elaborated from the common terpene lactone. In addition, it verifies the structure proposed in 

the literature for these compounds. Synthetic strategy described here will be widely applicable to the 

synthesis of other important phenylpropanoid lignan natural products. 
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