HETEROCYCLES, Vol. 72, 2007, pp. 649 - 654. © The Japan Institute of Heterocyclic Chemistry Received, 20th June, 2006, Accepted, 26th July, 2006, Published online, 28th July, 2006. COM-06-S(K)2

PARVIFLORENE J, A CYTOTOXIC SESQUITERPENE DIMER WITH A NEW REARRANGED SKELETON FROM *CURCUMA PARVIFLORA*

Mayu Tamaki,^a Samir Kumar Sadhu,^{a,b} Takashi Ohtsuki,^a Kazufumi Toume,^a Takashi Koyano,^c Thaworn Kowithayakorn,^d Masahiko Hayashi,^e Kanki Komiyama,^e and Masami Ishibashi^{a*}

^aGraduate School of Pharmaceutical Sciences, Chiba University, Chiba 263-8522, Japan, ^bPharmacy Discipline, Life Science School, Khulna University, Khulna-9208, Bangladesh, ^cTemko Corporation, 4-27-4 Honcho, Nakano, Tokyo Japan, ^dFaculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand, and ^eThe Kitasato Institute, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8642, Japan. E-mail: mish@p.chiba-u.ac.jp

Abstract – A new sesquiterpenoid dimer, parviflorene J, was isolated from *Curcuma parviflora*. The structure was elucidated using spectroscopic methods. Parviflorene J possessed an unprecedented backbone-rearranged skeleton and showed cytotoxicity against cultured tumor cell lines.

In our continuing research on the isolation of bioactive components from tropical plants,¹ we carried out phytochemical investigation on *Curcuma parviflora* Wall. (Zingiberaceae) collected in Thailand and isolated novel sesquiterpenoid dimers parviflorenes A-I, reported previously.²⁻⁴ Further separation of the extract afforded another new sesquiterpenoid dimer with an unprecedented backbone-rearranged skeleton, which was named as parviflorene J (1). In this paper, we report the isolation, structure elucidation, and cytotoxic activity of compound (1).

Parviflorenes A-I were previously isolated from the combined EtOAc and *n*-BuOH-soluble fractions of the MeOH extract of *C. parviflora*.²⁻⁴ Further fractionation of the remained materials using ODS HPLC and Sephadex LH-20 column chromatography yielded another new compound parviflorene J (1).

Parviflorene J (1) was obtained as an amorphous solid, $[\alpha]_D^{22}$ -116 (*c* 1.0, MeOH), and its molecular formula, C₃₀H₃₆O₄, was established by the observed peak at *m/z* 483.2490 (calcd for C₃₀H₃₆O₄Na [M+Na]⁺, 483.2511, Δ -2.1 mmu) in HRFABMS. Although the NMR spectral data showed some similarities with those of parviflorenes A-I,²⁻⁴ significant differences were also observed. The ¹H NMR

spectrum of **1** showed signals for two tertiary methyls attached on sp² carbons [$\delta_{\rm H}$ 2.20 (3H, s, H₃-30) and 2.33 (3H, s, H₃-15)] and four aromatic ring protons (Table 1). The ¹³C NMR spectrum aided by the HMQC experiment showed 14 sp² carbons and 16 sp³ carbons (Table 1). Since 7 out of 13 unsaturation degrees were accounted for by the 14 sp² carbons, **1** was implied to have six rings. The ¹H NMR also showed signals due to four secondary methyl groups, which were assigned to two isopropyl groups from the analysis of the ¹H-¹H COSY spectrum (H_3 -12/H-11/ H_3 -13 and H_3 -27/H-26/ H_3 -28). Additionally, signals of a hemiacetal proton at $\delta_{\rm H}$ 5.60 (s, H-14) and an sp³ oxymethine at $\delta_{\rm H}$ 4.19 (br s, H-7) were observed in the ¹H NMR spectrum, corresponding to the carbons resonating at $\delta_{\rm C}$ 107.6 and 73.8, respectively, in the ¹³C NMR spectrum as shown in the HMQC spectrum. The long-range ¹H-¹³C correlations in the HMBC spectrum together with the ¹H-¹H COSY correlation data are summarized in Figure 1 and Table 1, analysis of which led to the planar structure of compound (1) as follows. The HMBC correlations were observed for H₃-15/C-2, H₃-15/C-3, H₃-15/C-4, H-2/C-1, H-2/C-10, and H-4/C-10; these data showed the presence of a tetra-substituted benzene (ring A) with a methyl group (C-15) attached on C-3. Then, the COSY correlations for H-6/H-7 and H-7/H-8 together with the HMBC correlation for H-6/C-4, H-6/C-5, H-7/C-9, H-8/C-9, H-8/C-14, and H-14/C-10 suggested the presence of a cyclohexene ring (ring B) connected with the ring A through the C-5/C-10 double-bond; an isopropyl group was located on C-6 (COSY: H-6/H-11; HMBC: H₃-12/C-6 and H₃-13/C-6), and the hemiacetal carbon [C-14: $\delta_{\rm C}$ 107.6 and $\delta_{\rm H}$ 5.60 (1H, s)] was attached on the C-9 quaternary carbon ($\delta_{\rm C}$ 61.7). Another tetra-substituted benzene ring (ring E) was costructed in the same way from the HMBC correlations for H₃-30/C-17, H₃-30/C-18, H₃-30/C-19, H-17/C-16, H-17/C-25, H-19/C-25, H-21/C-19, and H-21/C-20, with a methyl group (C-30) attached on C-18. The COSY correlation for H-21/H₂-22 together with the HMBC correlations for H-22a/C-24, H-21/C-23, and H-21/C-25 suggested that a cyclohexadiene ring (ring D) was connected with ring E through the C-20/C-25 double-bond, and an isopropyl group was attached on C-21 as shown by the COSY (H-21/H-26) and HMBC (H₃-27/C-21 and H_3 -28/C-21) correlations. All of the 14 sp² carbons were thus accounted for by two benzene rings A and

Figure 1. ¹H-¹H COSY (bold lines) and key HMBC (arrows) correlations of parviflorene J (1)

No.	$\delta_{\rm H} (J \text{ in Hz})$	$\delta_{\rm C}$	HMBC	NOESY
1		156.0		
2	6.61 s	109.3	C-1, C-4, C-5 ^{a)} , C-10, C-15	H ₃ -15
3		139.0		
4	6.64	110 ((C_{18}) (C_{10}) (C_{15})	II (II 10 II 12 II 15

 Table 1.
 ¹H and ¹³C NMR data and HMBC and NOESY correlations of compound (1) in CDCl₃

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3		3	139.0		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4	6.64 s	4	119.6	C-1 ^{a)} , C-2, C-10, C-15	H-6, H ₃ -12, H ₃ -13, H ₃ -15
	5		5	135.9		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	2.31 m	6	44.4	C-3, C-4, C-5, C-7, C-8, C-11, C-13	H-4, H ₃ -12, H ₃ -13, H-22a
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	4.19 s	7	73.8	C-5, C-9, C-11, C-29	H-6, H-8, H ₃ -12, H ₃ -13, H-29a
9 61.7 10 124.4 11 2.25 m 25.7 C-5, C-7, C-12, C-13 H ₃ -12, H ₃ -13 12 1.07 d 6.8 20.0 C-6, C-11, C-13 H-6, H-7, H-11 13 1.17 d 6.8 23.1 C-6, C-11, C-12 H-4, H-6, H-7, H-11 14 5.60 s 107.6 C-1, C-10 H-22b, H-27 15 2.33 s 22.3 C-2, C-3, C-4 H-2, H-4 16 151.9	8	2.97 dd 9.8, 4.0	8	42.7	C-6, C-7, C-9, C-14, C-24, C-29	H-7, H-29b
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9		9	61.7		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10		10	124.4		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	2.25 m	11	25.7	C-5, C-7, C-12, C-13	H ₃ -12, H ₃ -13
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	1.07 d 6.8	12	20.0	C-6, C-11, C-13	H-6, H-7, H-11
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	1.17 d 6.8	13	23.1	C-6, C-11, C-12	H-4, H-6, H-7, H-11
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	5.60 s	14	107.6	C-1, C-10	H-22b, H-27
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	15	2.33 s	15	22.3	C-2, C-3, C-4	H-2, H-4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16		16	151.9		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	17	6.36 s	17	115.1	C-16, C-19, C-25, C-30	H ₃ -30
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18		18	137.0		
20 141.3	19	6.47 s	19	123.0	C-16 ^{a)} , C-17, C-21, C-25, C-30	H-21, H ₃ -28, H ₃ -30
21 2.24 m 46.0 C-19, C-20, C-23, C-26 H-19, H-22a, H ₃ -27, H ₃ -28 22 (a) 1.90 m 23.3 C-24 H-6, H-21 H-6, H-14 H-6, H-14 H-6, H-14	20		20	141.3		
22 (a) 1.90 m 23.3 C-24 H-6, H-21 (b) 2.40 m 23.3 C-24 H-6, H-14	21	2.24 m	21	46.0	C-19, C-20, C-23, C-26	H-19, H-22a, H ₃ -27, H ₃ -28
(b) 2.40 m H-6, H-14	22	(a) 1.90 m	22	23.3	C-24	H-6, H-21
	22	(b) 2.40 m		25.5		H-6, H-14
23 135.5	23		23	135.5		
24 130.9	24		24	130.9		
25 117.0	25		25	117.0		
26 1.83 m 29.8 C-21, C-22, C-27, C-28 H ₃ -27, H ₃ -28	26	1.83 m	26	29.8	C-21, C-22, C-27, C-28	H ₃ -27, H ₃ -28
27 0.92 d 6.8 20.2 C-21, C-26, C-28 H-14, H-21, H-22b, H-26	27	0.92 d 6.8	27	20.2	C-21, C-26, C-28	H-14, H-21, H-22b, H-26
28 0.71 d 6.8 21.6 C-21, C-26, C-27 H-21, H-26	28	0.71 d 6.8	28	21.6	C-21, C-26, C-27	H-21, H-26
29 (a) 2.83 dd 17.6, 4.0 37 8 C-7, C-8, C-23, C-24 H-7	29	(a) 2.83 dd 17.6, 4.0	29	37.8	C-7, C-8, C-23, C-24	H-7
(b) 3.31 dd 17.6, 9.8 C-23, C-24 H-8		(b) 3.31 dd 17.6, 9.8		57.0	C-23, C-24	H-8
30 2.20 s 21.1 C-17, C-18, C-19 H-17, H-19	30	2.20 s	30	21.1	C-17, C-18, C-19	H-17, H-19

bonds correlations

E and a double bond at C-23/C-24 position (δ_C 135.5 and 130.9, respectively). The COSY correlation for H-8/H2-29 and the HMBC correlations for H-8/C-9, H-8/C-24, H2-29/C-23, and H2-29/C-24 suggested that the C-8 (ring B) and the C-24 (ring D) was connected through an sp³ methylene carbon [C-29: $\delta_{\rm C}$ 37.8 and $\delta_{\rm H}$ 2.83 (1H, dd, J=17.6 and 4.0 Hz) and 3.31 (1H, dd, J=17.6 and 9.8 Hz)]. Since the HMBC correlation was clearly observed from the H-14 hemiacetal proton to the C-1 aromatic carbon $(\delta_{\rm C} 156.0)$, whose chemical shift implied that this C-1 aromatic carbon was oxygenated, a dihydrofuran ring (ring F) was constructed by C-1, C-10, C-9, C-14, and an ether oxygen atom. Since compound (1) was implied to have six rings (vide supra), the remaining two quaternary carbons (C-9 on ring B and C-23 on ring D) had to be connected by process of elimination to give rise to a cyclopentene ring (ring C). The whole planar structure of parviflorene J (1) was thus constructed, having an unprecedented bis-cadinane skeleton. The C-14/C-23 bond contained in most of parviflorenes [e.g., parviflorene A (2)]was migrated to C-9/C-23 bond; thus parviflorene J (1) possesses a $23(14\rightarrow 9)abeo$ -skeleton. Acetylation of compound (1) afforded a triacetate (3, m/z 586 [M⁺] in EI-MS). The ¹H NMR spectral data of 3 showed three acetyl methyl signals, and significant downfield shifts were observed for two acetoxy-bearing methine protons of **3** [δ_H 5.12 (H-7) and δ_H 6.48 (H-14)], compared to those of **1** [δ_H 4.19 (H-7) and 5.60 (H-14)].

The relative stereochemistry of parviflorene J (1) was elucidated by combination of NOESY and differential NOE experiments (Figure 2). The NOESY data were summarized in Table 1. Irradiation of H-7 showed NOEs in H-8 and H₃-12, and additionally, irradiation of H-8 showed NOE in H-7, indicating that these hydrogens were oriented in the same side in space. Since the H-7 signal was observed almost as a singlet in the ¹H NMR spectrum, its dihedral angles with both of H-6 and H-8 were almost 90 degrees and the hydroxyl group on C-7 was therefore axial. On the other hand, irradiation of H-14 showed NOEs in H-22b and H₃-27, while NOE was observed at H-14 on irradiation of H₃-27, thus

Figure 2. Key NOEs observed for parviflorene J (1)

suggesting that the H-14 was oriented close to ring D and the C-14 hydroxyl group oriented to ring B side.

The B/C ring juncture at C-8 and C-9 had to be *cis* on the basis of the model consideration. Thus, the relative stereochemistry of parviflorene J was suggested as shown in structure formula (1). Although the CD spectral data of parviflorene J (1) (see, experimental section) were not similar to those of other parviflorenes such as 2^{2-4} the absolute stereochemistry of these biscadinanes obtained from the same plant were assumed to be corresponding to each other.

The new compound, parviflorene J (1), exhibited cytotoxicity against Jurkat,⁵ and vincristine-resistant P388/VCR and KB/VJ-300⁶ cell lines with IC₅₀ values of 3.0, 0.54, and 2.4 μ g/mL, respectively.

EXPERIMENTAL

Optical rotation was measured with a JASCO P-1020 polarimeter. CD spectrum was obtained in a JASCO J-720WI spectropolarimeter. EIMS was measured on a JEOL GC-Mate and HRFABMS on a JEOL HX-110A spectrometer. NMR spectra were recorded on JEOL JNM A500 and ECP600 spectrometers with a deuterated solvent which chemical shift was taken as an internal standard.

Extraction and isolation: The plant *Curcuma parviflora* was collected at Khon Kaen, Thailand. A voucher specimen has been deposited at Faculty of Agriculture, Khon Kaen University. Previous TLC examination revealed that the parviflorene-related compounds were contained in the underground part of this plant.³ The air-dried underground part (280 g) was extracted with MeOH and acetone. The combined extract (12.6 g) suspended in water (200 mL) was partitioned against EtOAc (400 mL×2 and 200 mL) and *n*-BuOH (200 mL×2). The EtOAc-soluble fraction (8.0 g) and previously obtained EtOAc and *n*-BuOH-soluble fractions (2.9 g) from the whole plant² were combined, and subjected to a silica gel column chromatography (column A, 4.5×57 cm) eluted with 0-100% EtOAc in hexane. The fraction (0.9 g) of column A eluted with 33-50% EtOAc in hexane was further separated by second silica gel column chromatography (3.5×21 cm) eluted with 0-100% EtOAc in hexane. From a fraction (126 mg) eluted with 33% EtOAc in hexane, a part (88 mg) was purified by an ODS HPLC with 85% MeOH (Mightysil RP18GP, 10×250 mm) to give compound (1) (10 mg). Compound (1) (9.6 mg) was also obtained from another fraction (412 mg) of column A eluted with 33-50% EtOAc in hexane after separation by a Sephadex LH-20 column chromatography (1.5×63 cm) eluted with MeOH followed by purification by HPLC under the same conditions as above.

Parviflorene J (1): amorphous solid; $[\alpha]_D^{22}$ -116 ° (*c* 1.0, MeOH); CD (0.743 mM, MeOH, 24°C) Δε (nm): -4.9 (308), 0 (292), 14.1 (273), 0 (249), -16.0 (235), -8.6 (225) and -37.4 (210); UV λ_{max} (MeOH) 309 (logε 4.0), 285 (4.1), 276 (4.1) and 204 (4.6); IR (film) ν_{max} 3288, 2958, 2871, 1713, 1614, 1575 and 1456 cm⁻¹; EIMS *m/z* 460 (M⁺); HRFABMS (NBA/PEG) *m/z* 483.2490 (calcd for C₃₀H₃₆O₄Na 483.2511, Δ -2.1 mmu); ¹H and ¹³C NMR (Table 1).

Acetylation of 1: Compound (1) (1 mg) was treated with acetic anhydride (500 µL) and pyridine (500 µL) under stirring for 24 h at room temperature. After usual work up, 0.7 mg compound (3) was obtained. ¹H NMR (CDCl₃, 500 MHz) δ : 0.82 (3H, d *J* = 6.8 Hz), 0.92 (3H, d *J* = 6.8 Hz), 0.93 (3H, d *J* = 6.8 Hz), 1.18 (3H, d *J* = 6.8 Hz), 1.78 (3H, s), 1.88 (1H, m), 2.00 (3H, s), 2.28 (3H, s), 2.35 (3H, m), 2.36 (3H, s), 2.35-2.43 (4H, m), 2.58 (1H, brd *J* = 17.0 Hz), 2.99 (1H, brd *J* = 9.4 Hz), 3.26 (1H, dd, *J* = 17.0, 9.0 Hz), 5.12 (1H, s), 6.48 (1H, s), 6.64 (1H, s), 6.67 (1H, s), 6.70 (1H, s), 6.80 (1H, s); EIMS *m/z* 586 (M⁺).

Cytotoxic activity: For Jurkat cells, 3.5×10^5 cells/mL of the cells were seeded in 95 µL of culture medium per well in 96-well microtitre plates, and were treated with 5 µL of graded concentrations of samples in the absence or presence of 0.5 µg/mL of TRAIL, and were then incubated for 42 h at 37°C in a 5% CO₂-95% air atomosphere. Cell viability was determined by the colorimetric assay using alamer blue.⁵ KB/VJ-300 cells (1.2 x 10⁴) in 195 µL of culture medium were seeded in 96-well plates, and were pre-incubated for 24 h at 37 °C. The cells were treated with 5 µL of graded concentrations of samples, and then incubated at 37 °C for 72 h. Cell viability was determined by the colorimetric assay using MTT.⁶

ACKNOWLEDGEMENTS

This work was supported by Grant-in-Aid for Scientific Research on Priority Areas (18032020) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan, by a Grant-in-Aid from the Terumo Lifescience Foundation, and by a Grant-in-Aid from Tokyo Biochemical Research Foundation (TBRF).

REFERENCES

- M. Ishibashi, K. Toume, Y. Yamaguchi, and T. Ohtsuki, *Recent Research Developments in Phytochemistry*; Research Signpost; Trivandrum, India, 2004, 8, 139 and references cited therein.
- 2. M. Takahashi, T. Koyano, T. Kowithayakorn, M. Hayashi, K. Komiyama, and M. Ishibashi, *Tetrahedron Lett.*, 2003, 44, 2327.
- 3. K. Toume, M. Takahashi, K. Yamaguchi, T. Koyano, T. Kowithayakorn, M. Hayashi, K. Komiyama, and M. Ishibashi, *Tetrahedron*, 2004, **60**, 10817.
- K. Toume, M. Sato, T. Koyano, T. Kowithayakorn, T. Yamori, and M. Ishibashi, *Tetrahedron*, 2005, 61, 6700.
- 5. R. D. Fields and M. V. Lancaster, Am. Biotechnol. Lab., 1993, 11, 48.
- M. C. Alley, D. A. Scudiero, A. Monks, M. L. Hursey, M. J. Czerwinski, D. L. Fine, B. J. Abbott, J. G. Mayo, R. H. Shoemaker, and M. R. Boyd, *Cancer Res.*, 1988, 48, 589.