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Abstract – The o-Claisen rearrangement of bis-(allyloxy) naphthalenes, 

anthracenes and phenanthrenes is regiospecific and is consistent with resonance 

theory and molecular orbital calculations.

While the o-Claisen rearrangement of allyl phenyl ethers has been rigorously studied,1  the rearrangement 

of bis-allyl aryl ethers has been limited to the ethers of hydroquinone (1),2 resorcinol (2),3 and 2,6- 

dihydroxynaphthalene (3).4  As shown in Scheme 1, the rearrangement of bis-1,4-(allyloxy)benzene (1) 

gives two isomeric o-Claisen rearrangement products, whereas the rearrangements of bis-1,3- 

(allyloxy)benzene (2) and bis-2,6-(allyloxy)naphthalene (3) give single products (an asterisk indicates an 

available ortho position). Because we required various allyl substituted anthracenes and phenanthrenes 

for other projects, the rearrangement of the bis-allyl ethers of sixteen polycyclic aromatic compounds was 

investigated. 
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Chart 1 presents the results obtained from the thermolysis of three bis-(allyloxy)naphthalene derivatives 

and two bis-(allyloxy)anthracene derivatives.  In order to preclude decomposition, the crude 

rearrangement product was methylated prior to isolation and characterization.5-8  Please note that ethers 4 

and 5 can give rise to two isomeric products, while substrates 6, 7 and 8 can rearrange to any of three 

isomeric products.  Nevertheless, the sigmatropic rearrangement of each bis-ether shown produced a 

single rearranged product.  Unfortunately, the rearranged product of bis-ether 8 decomposes under the 

reaction conditions required for rearrangement;9  this low yield contrasts with the high overall yield 

obtained for each of the other rearrangements. 
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The o-Claisen rearrangement of phenanthrene-based bis-allyl ethers was also studied (Chart 2).  Although 

several possible phenanthrene derivatives can be envisioned, bis-allyl ethers 9-12 were the focus of our 

study.10  The regiospecific rearrangement of bis-ether 9 is particularly interesting since both benzylic sites 

are extremely crowded.  In order to expand the scope of these rearrangements, a more substituted allyl 

ether, i.e. 12, was synthesized.  However, under the lengthy reaction conditions employed and despite the 

presence of a base in the reaction medium, the rearrangement of bis-ether 12 gave a single bis- 

dihydrofuran (cf. 12b), formed by protonation of the disubstituted double bonds present in rearranged 

product 12a, followed by ring closure. We speculated that shorter reaction times might minimize the 

formation of the dihydrofuran products. However, heating of naphthalene ethers 13 and 14 for only  
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twenty-four hours produced heterocycles 13b and 14b in 50% yield, and 40-50% yield of the rearranged 

products 13a and 14a (Scheme 2).  The yield for the formation of the heterocycles was improved by 

simply treating the crude rearrangement product with mild acid and mild warming. 
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The above results indicate that when there is a choice between two unsubstituted ortho positions, the 

rearrangement always occurs at the -position.  This regioselectivity can be explained by considering the 
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aromaticity of the ketone intermediate that is generated in situ (Scheme 3).  For example, rearrangement 

towards the -position (cf. ii) preserves the aromaticity in the fused ring,  whereas rearrangement towards 

the ’-position generates a non-aromatic initial ketone (cf. iv), making this a higher energy intermediate 

and therefore a less likely reaction pathway.  Alternatively, ab inito calculations show bond orders of 

1.724 and 1.603 for the , - and , ’- bonds of naphthalene, respectively,10  thus indicating that the , - 

bond (cf. i) has more double bond character than does the , ’-bond (cf. iii). 
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The regioselectivity of the o-Claisen rearrangement of allyl ethers of heterocyclic polycyclic aromatics 

such as substrates 15 and 16 is consistent with this analysis (Scheme 4). The synthetic utility of this work 

is forthcoming.  
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