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Abstract – A concise synthesis of 9-epi-grandisine A is described, which makes 

use of a Lewis acid-promoted hetero-Diels-Alder reaction to construct the 

tricyclic skeleton.  Attempts to obtain grandisine A through a late-stage 

controlled epimerization are also discussed.

 

Recently, several novel indolizidine alkaloids, grandisine A (1), B1 and C–F,2 were isolated by Carroll 

and co-workers from the leaves of the Australian rainforest tree, Elaecarpus grandis.  In addition to 

their interesting structures, these compounds possess modest binding affinity (~1-75 μM) for the human 

-opioid receptor.  Opioid receptors (μ, , ) are G-protein coupled receptors, long known to be 

involved in the modulation of pain.  Interestingly, activation of both the μ and -receptors by an 

agonist (i.e. morphine) causes a number of undesired side effects, including nausea, itching and reduced 

blood pressure. However, it has been shown in animal models that selective activation of the  -receptor 

by agonists results in pain modulation without these adverse side effects.3  Thus, higher affinity small 

molecule agents, perhaps based on the grandisine lead, which may selectively bind to the  -receptor, 

could represent valuable avenues for exploration in the ongoing search for improved therapeutic agents 

for the management of pain. 
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Of this class of compounds, we were particularly interested in grandisine A (1), which presents all 

cis-hydrogens at C7, C8 and C9 (Figure 1), resulting in a highly “cupped” tetracyclic structure.  Carroll 

and co-workers had assigned the relative stereochemistry of 1 from a combination of coupling constants 

and ROESY correlations.1  Interestingly, the relative stereochemistry of grandisine A differs from the 

other members of the grandisine family, in which C7 and C8 are trans with respect to C9.  We 

anticipated that a mission directed to the synthesis of the presumably internally hindered grandisine A 

would present a formidable synthetic challenge.  The combination of this unique structural feature of 

grandisine A and its lead value en route to a potent and selective -opioid agonist rendered it an 

attractive target for total synthesis.  Herein, we describe initial investigations toward the total synthesis 

of grandisine A.  The approach makes use of a Lewis-acid promoted hetero-Diels-Alder (HDA) 

reaction, followed by an acid-catalyzed cyclization/dehydration sequence to construct the core scaffold 

of 1.  Moreover, our attempts at a late stage controlled epimerization of 9-epi-grandisine A are also 

discussed.   
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Figure 1. Grandisine A, C, E and F  

 

Studies directed to the synthesis of grandisine A (1) commenced with bromoindolizidine 3,4 itself 

prepared by known methods in 6 steps (47% overall yield) from commercially available 

4-trimethylsilyl-3-butyn-1-ol (2).  Sonogashira coupling5 of 3 with TMS-acetylene under standard 

conditions, followed by base-mediated silyl deprotection, afforded the desired product 4 (76%, 2 steps).  

Formation of the enone 5 was accomplished in high yield via Hg(OAc)2 catalyzed hydration of the 

alkyne followed by basic workup.  With enone 5 in hand, our attentions turned to the key 

hetero-Diels-Alder cycloaddition. Our initial investigations of this reaction utilized a TBS-siloxy diene 

(formed from 5, using TBSOTf, 2,6-lutidine). Following an extensive survey of reaction conditions, we 

identified BF3•OEt2 in CH2Cl2 at –78 oC as the optimal system.6  Indeed, most other Lewis acids and 

solvents examined yielded mainly Mukaiyama aldol7 product, or resulted in no reaction.  However, 

even under our optimal system, we observed significant amounts of hydrolyzed starting material 

(~25%) and Mukaiyama aldol product (~20%) in addition to the desired HDA adduct (51%, 2.5:1 

exo:endo).  We thus turned to the TIPS-siloxy diene 6, in the hope that it might be more robust toward 
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hydrolysis and that it also would favor the desired cycloaddition pathway over the competing 

Mukaiyama aldol pathway.8  To our delight, exposure of 6 to our optimal HDA conditions (vide supra) 

gave the desired product (from the standpoint of the C7-C9 relationship), albeit as a mixture of exo:endo 

isomers.  Subsequent deprotection of the TIPS enol ether using acetic acid buffered TBAF furnished 

the tricyclic compounds 8a and 8b as a ~7:1 mixture of isomers.  Following 2D NMR analysis (COSY 

and NOESY) of the cycloadducts, it became apparent that the HDA cycloaddition had strongly favored 

the undesired exo isomer.  However, although the HDA cycloaddition occurred primarily from the 

undesired face, the subsequent protonation of the enol ether did afford the desired C7–C8 cis-ring 

junction.  Interestingly, the product obtained from the HDA reaction and subsequent protonation of the 

enol ether represents the required relative stereochemistry for grandisines C, E and F, as shown in 

Figure 1.  Despite the stereochemical outcome of the HDA reaction, the facile construction of this 

advanced tricyclic intermediate encouraged us to proceed with the synthesis, in the hopes of correcting 

the stereochemistry of C12 and C9 at a later juncture. 
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Scheme 1. a) TMS-acetylene (3 equiv), Pd(PPh3)4 (0.05 equiv), CuI (0.1 equiv), NEt3 (4 equiv), DMF, 

50 oC, 3 h, 76% b) 2 N KOH MeOH, MeOH, 25 oC, 100% c) Hg(OAc)2 (0.1 equiv), H2SO4 (1.1 equiv), 

AcOH, 25 oC, 95% d) TIPSOTf (1.5 equiv), 2,6-lutidine, CH2Cl2, 4Å mol. sieves, 0 oC 25 oC, 91% e) 

6, CH2Cl2, –78 oC then acetaldehyde (10 equiv), BF3•OEt2 (2 equiv), CH2Cl2, –78 oC f) TBAF (1.1 

equiv), AcOH (1.5 equiv), THF, 0 oC 25 oC, 79-88% (2 steps).     

 

As suggested in Scheme 2, we envisioned that the configuration of the C12 methyl group of 8a could be 

inverted by conversion to enone 10, followed by hydrogenation from the less hindered -face.  In the 

event, the TMS enol ether (9) was generated smoothly through the action of LiHMDS and TMSCl, as 

depicted in Scheme 2.  Our initial attempts to form enone 10 through a Saegusa-Ito oxidation  
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(Pd(OAc)2 (1.1 equiv), MeCN)9 led to significant hydrolysis of the TMS-enol ether.  Attempts to 

buffer the reaction conditions with NaHCO3 led to partial epimerization of the resulting enone.  A 

more robust TES enol ether afforded minimal hydrolysis but the reaction did not proceed in MeCN.  

By changing the solvent to DMSO and using the catalytic variant (Pd(OAc)2 (0.1 equiv), O2),
10 we were 

able to observe product formation; however, the isolated yield suffered considerably due to the water 

solubility of the product.  Fortunately, the employment of conditions reported by Shibasaki and 

co-workers (Pd2(dba)3 (0.1 equiv), diallycarbonate (2.0 equiv), MeCN)11 resulted in the clean conversion 

of 9 to the desired enone 10, with minimal hydrolysis.  Gratifyingly, hydrogenation with Pd/C and H2 

gave the desired product 8b exclusively by 1H NMR.  One advantage of this route is that both products 

of the HDA can be carried through to give exclusively 8b; thus, the distribution of exo/endo isomers 

arising from the cycloaddition is ultimately inconsequential. 

 

 

 

Scheme 2. a) LiHMDS (1.3 equiv), TMSCl (2.0 equiv), THF, –78 oC b) Pd2(dba)3 (0.1 equiv), 

diallylcarbonate (2.0 equiv), MeCN, 25 oC, 70% (2 steps) c) 10% Pd/C, H2 (1 atm), THF, 94%. 

 

 

Having corrected the stereochemistry at C12, we next turned our attention to the completion of the 

grandisine A core structure, with the hope of accomplishing a late stage epimerization at C9 to complete 

the synthesis.  One of the more difficult transformations of the synthesis was expected to be the aldol 

reaction of 8b with aldehyde 1112 (prepared from commercially available ethyl-(R)-3-hydroxybutyrate).  

Possible complications of this transformation might include -elimination and the formation of bis-aldol 

products, resulting from the undesired enolization of the amide moiety.  Ultimately we found that in 

situ formation of the zinc enolate with ZnCl2 and careful warming of the reaction mixture from –78 oC 

to –50 oC resulted in formation of the desired -hydroxy ketone in 40-65% overall yield (60-86% 

BRSM).  Unfortunately, full consumption of the starting material was never realized, as efforts to drive 

the reaction to completion by increasing the temperature or equivalents of reactants led to significant 

decomposition (vide supra). 
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Scheme 3. a) LiHMDS (1.3 equiv), ZnCl2 (2.0 equiv), (R)-3-(tert-butyldimethylsiloxy)butanal (11) (1.5 

equiv), THF, –78 oC  –50 oC, 40-65% overall, 60-86% BRSM b) Dess-Martin periodinane (1.4 equiv), 

CH2Cl2, 0 oC 25 oC, 84% c) cat. pTsOH•H2O, 4Å mol. sieves, toluene, 90 oC, 80% d) Lawesson’s 

reagent (0.5 equiv), toluene, 25 oC 60 oC, 85% e) Raney nickel, EtOH, 40 oC, 100%, HPLC separation 

yields a 1:1 mixture of stereoisomers. 

 

Additionally, it should be noted that given that 8b is racemic and aldehyde 11 is introduced as a single 

enantiomer, the resulting product is a mixture of diastereomers as shown in Scheme 3.  Although this 

solution is not ideal, the remote nature of the stereocenter at C16 makes this methyl group difficult to 

introduce with stereoselectivity in the racemic series.  Since the diastereomeric products could not be 

readily separated by column chromatography at this stage, the mixture was carried through to a later 

stage of the synthesis.  Thus, Dess-Martin oxidation of the -hydroxy ketone arising from the aldol 

provided the desired 1,3-diketone 12 in 84% yield.  This intermediate was then subjected to 

acid-catalyzed cyclization with concomitant dehydration using pTsOH in toluene at 90 oC, to furnish the 

desired dihydropyrone 13 in 80% yield. 

The remaining challenges for the completion of the synthesis of grandisine A would be the reduction of 

the amide and the controlled epimerization of the C9 stereocenter.  Given the presence of the enone 

moiety in the molecule, we anticipated that direct hydride- or borane- mediated reduction of the amide 

to the amine would be difficult to achieve.  Thus, the amide was selectively converted to the thioamide 

in the presence of the ketone, through the use of Lawesson’s reagent (0.5 equiv) in toluene at 25 °C 60 

°C.  When these conditions were not carefully adhered to, substantial amounts of the 

thioketone-thioamide were observed.  Completion of the 9-epi-grandisine A synthesis was 

accomplished via Raney nickel mediated desulfurization, which proceeded in quantitative yield.  At 

this stage, the two stereoisomers arising from the aldol reaction could be separated through normal  
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phase HPLC purification, and analysis using 1H, 13C and 2D NMR experiments (COSY and NOESY) 

provided support for the assignment of stereochemistry of 9-epi-grandisine A.13   

With 14 in hand, we sought to explore the possibility of effecting the inversion of the C9 stereocenter, in 

the hopes of reaching the natural product itself. Given the “cupped” nature of the natural product, we 

envisioned that if the desired iminium ion between C9 and the nitrogen could be formed (cf. 16), then 

the ensuing hydride delivery should occur from the desired convex face.  Toward this end, we turned 

to the Potier-modified14 Polonovski reaction15 to effect this transformation (Scheme 4).  As such, 

treatment of 9-epi-grandisine A (14) with m-CPBA led to clean conversion to the desired N-oxide (15), 

which was then treated with trifluoroacetic anhydride (TFAA), followed by exposure to a hydride 

source (NaCNBH3 or NaB(OAc)3H).  Unfortunately, only starting material was recovered from this 

reaction sequence.  
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Scheme 4.  a) 100% m-CPBA (1.1 equiv), CH2Cl2, 0 oC, b) TFAA (2.0 equiv), CH2Cl2, –20 oC 25 oC 

c) NaCNBH3 or NaB(OAc)3H, MeOH, 0 oC ~20-30% d) 1) Hg(OAc)2 (10 equiv), 5% AcOH, 100 oC or 

2) Hg(OAc)2:EDTA (1:1) (3.0 equiv), 33% aq. EtOH, reflux. 

 

This result suggests that imine formation is likely occurring via deprotonation at either C5 or C3 to 

afford intermediates 17 or 18, respectively.  Formation of either of these iminium ion intermediates 

would clearly represent an unproductive pathway, as hydride delivery would lead to the re-generation of 

starting material.  Several variations to this reaction were investigated; however, all resulted in 

relatively low recovery (~30%) of starting material as the only isolated product.  Although 

discouraging, this observation is not without precedent, as often the Polonovski-Potier reaction proceeds 

from the less-substituted position, unless other factors, such as extended conjugation, are involved.  

Upon the failure of the Polonovski-Potier method, we next investigated the possibility of using 

mercury-based reagents, such as Hg(OAc)2
16 or Hg(OAc)2:EDTA,17 to promote formation of the correct  
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iminium ion.  Unfortunately, these efforts led to either recovered starting material or degradation 

products.   

In conclusion, the results disclosed herein provide important perspective which might well form a basis 

for the completion of a total synthesis of grandisine A.  Further studies toward this end are currently 

ongoing and their results will be described in due course. 
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