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Abstract – For the first time, a facile synthesis of 2-pyridones utilizing a classical

Hilbert-Johnson reaction of 2-methoxypyridines with haloalkanes under high

pressure has been achieved. The reactions were sensitive to steric hindrance of

haloalkanes.

INTRODUCTION

Irreversible lactim-lactam tautomerization has been recognized a long time ago and generally either

achieved by heat or catalysts. One of the synthetic applications was reported by Knorr as early as 1897.1

Later, this reaction was first applied to synthesis of pyrimidine-nucleoside by Johnson and Hilbert,2 thus

being called as Hilbert-Johnson reaction (HJR). The reactions have been employed as one of protocols for

preparations of pyrimidine-nucleosides.3 The biological and medicinal interest in pyrimidines4 affords

further impetus to prepare new types of their derivatives.5 Because of synthetic utilities of HJR for

synthesis of pyrimidine-nucleosides, a more sophisticated version of HJR has been developed employing

silyloxypyrimidines rather than alkoxypyrimidines with aids of Lewis acids such as AlCl3, SnCl4, and

Me2SiSO3CF3 by Vorbrüggen (the silyl HJR:VHJR).6  In particular, the VHJR was used, as one of key

steps, for total synthesis of the anthelmintic agent hikizimycin.7 The classical HJR is not limited to 2,4-

dialkoxypyrimidines with haloalkanes and halogenoses. Specifically, reaction of 3,5-diethoxy-1,2,4-

thiadiazole with benzyl bromide gave benzylethoxy-thiazolinone.8 The HJR is amenable to

dimethoxypyridines but requires more harsh conditions probably because of less electron deficient nature

than pyrimidines. Therefore, as an initial stage of studies on HJR, we performed HJR under high pressure

because we needed for some time pyridones which undergo Diels-Alder reaction with such reactive

dienophiles as dimethyl acetylenedicarboxylate to give the corresponding adducts that could serve as an

HETEROCYCLES, Vol. 72, 2007 187



isoquinuclidine skeleton.9, 10

RESULTS AND DISCUSSION

An initial and dramatic example would be 2,6-dimethoxypyridine (1) with iodomethane. Thus, reaction of

1 with an excess of iodomethane at 0.6 GPa and 40 oC for 24 h afforded 6-methoxy-1-methyl-2-pyridone

(2a) quantitatively, whereas at 0.1MPa and 80 oC for 24 h the same reaction yielded 35 % of 2a.11 Since

the first step of HJR is clearly quaternization (Menschutkin reaction) of 1 which has two methoxy groups

at ortho-positions, the reaction would be sensitive to structures of iodoalkanes.12 This was indeed the case

as shown in Table 1. 1-Iodopropane with 1 even at higher pressure and temperature and for a longer

reaction time gave 2c only in moderate yield. Unfortunately, 2-iodopropane and 2-iodobutane were

almost inert to 1 under the same conditions (0.8 GPa, 100 oC, 48 h).
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Scheme 1. HJR of 2,6-dimethoxypyridine (1) with iodoalokanes (2)

Table 1. Reaction of iodoalkanes with 11
   R  Pressure

 (GPa)
Temperature
    (oC)

Reaction
time (h)

Yielda)

 (%)

  Me
   Et
   Et
  n-Pr

    0.6
0.8
0.8
0.8

     40
     80
    100
    100

   24
   48
   48
   48

 100
  35
  83
  56

a) Isolated yield based upon 11 and not optimized. Starting materials are

recovered except in the case of reaction with iodomethane

To help clarify further scope and limitations, a commercially available 2-methoxy-5-nitropyridine (3) was

chosen as a substrate and at 100 o the reactions were performed C and 0.8 GPa. The results are

Summarized in Table 2.13 Reaction of iodomethane and iodoethane with 3 afforded 4a and 4b albeit only
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Scheme 2. HJR of 2-methoxy-5-nitroypyridine (3) with haloalkanes
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   Table 2. HJR of 2-methoxy-5-nitropyridine (33) with haloalkanesa) 
   R     X    Time 

  (days) 
      Yield (%) 
   44          4a 

   Me 
   Et 
  n-Pr 
  PhCH2 

    I 
    I 
    I 
    Br 

   2 
   4 
   3 
   3 

63 --- 
15 ndb 
31 30 

  70          12 
   a Isolated yields based upon 33 and not optimized. In all the cases 
    starting materials were recovered. 
   b Not detected. 
 

in low yield in the latter case. However, iodopropane and benzyl bromide gave 4c and 4d in moderate 

yields along with 4a. 

The postulated mechanism of the HJR for pyrimidine nuleoside synthesis is an initial quaternization of 

nitrogen heterocycles 5, followed by halide assisted lactim-lactam tautomerization of 7 (Scheme 3).14  In 

view of this mechanism, 4a presumably formed by reaction of liberated MeX with 2 in the cases of 

relatively larger groups such as n-Pr and Bn than Me because of a long reaction time.          
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Scheme 3. Postulated mechanism of HJR
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Further studies on a classical HJR and, in particular VHJR, under neutral conditions for exploration of 

synthetic applications to pyrimidine-nucleosides are underway and will be reported in due course. 
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