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Abstract – The Mannich-like reactions of the enolates generated from 

2,3-di-O-protected 6-deoxy-4-O-propionyl- -D-glucopyranosides with (3R,4R)- 

4-acetoxy-3-[(R)-1-(t-butyldimethylsilyloxy)ethyl]azetidin-2-one were  

investigated.  The corresponding 2,3-di-O-methyl derivative provided the 

Mannich adduct in good to excellent stereoselectivity.  From the major adduct, 

the azetidin-2-one incorporating an -methyl acetic acid side chain at the C-4 

position with -configuration was obtained by alkaline hydrolysis. This product, 

(3S,4S)-3-[(R)-1-(t-butyldimethylsilyloxy)ethyl]-4-[(R)-1-carboxyethyl]azetidin-2-

one, is a useful intermediate for the 1 -methylcarbapenem synthesis. 

INTRODUCTION 

Since the discovery of (+)-thienamycin (1)1  (Figure 1), particularly during the 1980s, the chemical and 

pharmacological development of carbapenems has been a focus in modern medicinal chemistry. Through 

the chemical modifications of thienamycin to improve the intrinsic chemical stability, the Merck group 

synthesized 1 -methylthienamycin (2), in which a methyl group with (R)-configuration is introduced at 

the C-1 of the carbapenem nucleus.2 Since then, a number of 1 -methylcarbapenems have been 

synthesized, and some 1 -methylthienamycin congeners, such as meropenem (3)3, have come into the  
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As concerns the chemical synthesis of 1 -methylcarbapenems, numerous synthetic approaches have been 

developed during the last two decades.4  The most common approach is a late-stage ring closure for the 

bicyclic skeleton construction by using a C-4 functionalized azetidin-2-one, such as 4, namely 

(3S,4S)-3-[(R)-1-(t-butyldimethylsilyloxy)ethyl]-4-[(R)-1-carboxyethyl]azetidin-2-one, which in turn 

would be constructed via the Mannich-like coupling reaction of commercial (3R,4R)-4- 

acetoxy-3-[(R)-1-(t-butyldimethylsilyloxy)ethyl]azetidin-2-one (5) with the enolates generated from 

achiral or chiral propionic acid esters (Scheme 1).5,6   
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Scheme 1.  Most commonly employed synthetic approach to 1 -methylcarbapenems 

 

In this decade, we have studied the asymmetric carbon-carbon bond-forming reactions by using a variety 

of glycopyranose-based templates as efficient chiral auxiliaries.7 As an extension of this sugar template 

strategy, we have explored the stereoselective Mannich-like reaction of 5 with a number of 2,3-O- 

protected methyl 6-deoxy-4-O-propionyl- -D-glucopyranosides (6) as the sources of chiral propionyl   
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Scheme 2.  Our concept for the synthesis of 4 by using sugar templates 

104 HETEROCYCLES, Vol. 72, 2007



 

enolates (Scheme 2). The desired Mannich-adduct (7 ), if it could be obtained efficiently, would then be 

hydrolyzed to isolate the key intermediate (4) along with the recovery of the 4-O-unprotected sugar 

templates (8). 

 

RESULTS AND DISCUSSION 

We started the Mannich-like carbon-carbon bond-forming reaction by using the 2,3-di-O-TBS-type 

compound (6A), the most promising substrate for the stereoselective -alkylation of the propionyl ester 

evidenced in our previous studies.7f.7h After a brief treatment of 6A with a base, azetidin-2-one (5) was 

added to the thus formed enolate, and the solution was then quenched (Scheme 3).  The representative 

results are shown in Table 1. In most cases, disappointing results were obtained (entries 1-3). Thus, 

decomposition or recovery of 6A occurred predominantly. In one case (entry 2), the Mannich-adduct was 

isolated in a far from satisfactory yield of 6%.  The adduct was 7 A (not shown) instead of the desired 

7 . The stereochemistry of the newly introduced contiguous chiral centers in the adduct was 

determined by 1H NMR analysis.8  When 2,3-di-O-benzyl-4-O-propionate (6B)9 was used as substrate, 

mixtures of the desired 1 -adduct (7 B) and the 1 -isomer were obtained (entries 4 and 5).    The ratio  
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Table 1. 

NaHMDS, THF, -18 °C

LiHMDS (5.0 eq), THF,
-78 °C

LiHMDS (5.0 eq), 
LiCl (2.5 eq), THF,  -78 °C

LiHMDS (5.0 eq), THF, -78  °C

LiHMDS (3.0 eq), LiCl
(3.0 eq), THF, -78 °C

LiHMDS (5.0 eq), THF, -78 °C

LiHMDS (5.0 eq), LiCl
(5.0 eq), THF, -78 °C

decomposition

6%(7 A only) 

52% (1.7:1)

23% (2.3:1)

18% (5:3)

19% (5:3)

1

2

3

4

5

6

7

Entry Base, Additive, Solvent, Temperature Combined yieldSubstrate

6A

6A

6A

6B

6B

6C

6C

(7 :7 ) Recovery of 6

79% 6A 

83% 6A 

45% 6B 

75% 6B

55% 6C

81% 6C
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of 1 - and 1 -isomer was varied depending on the reaction conditions.  The additive LiCl was likely to 

be a somewhat stereocontrolling factor.  Then, 2,3-di-O-( -naphthylmethyl)-4-O-propionate (6C) was 

examined for the coupling with 5 (entries 6 and 7).  However, we could not improve the ratio of the 

1 -isomer, i.e., 7 C, and the -isomer.  In contrast to our expectation, bulky substituents, such as OTBS 

(6A), OBn (6B), or ONAP (6C), at C-3 in the sugar-based substrates did not serve as a significant 

stereocontrolling element for the attempted Mannich-like reaction with 5. 

Then, we chose a new substrate, i.e., 2,3-di-O-methyl derivative (6D), which possesses a sterically less 

congested substituent OMe group at C-3 (Scheme 4).  The representative results on the reaction of the 

enolate derived from the 4-O-propionate (6D) with 5 are summarized in Table 2. We were pleasantly 

surprised to see that, in many cases, the ratios of 7 D and the -isomer (7 D) were remarkably high in 

favor of the desired 7 D.10  We thoroughly examined the base, solvent, reaction temperature, and 

presence or absence of additives.  Although the combined yields of 7 D and 7 D were not necessarily 

remarkable, the efficiency of the base regarding the stereoselectivity was significant in the cases of 

lithium hexamethyldisilazide (LiHMDS) (entries 1-3).11 Importantly, unreacted 6D was recovered without 

significant loss in many cases.12 Sodium hexamethyldisilazide (NaHMDS) also served as an effective 

base, which predominantly provided 7 D with a ratio of 14:1 in 42% yield in the presence of LiCl at 

–78 °C (entry 7).13  We propose a plausible transition-state model for explanation of the observed the 

diastereoselectivities achieved using the new template (6D) (Scheme 5).   Although we could not confirm 
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Scheme 4.  Mannich-like reaction using the substrate (6D) 

Table 2. 

Entry Base, Additive, Solvent, Temperature Combined yield  (7 D:7 D) Recovery of 6D

1

2

3

4

5

6

7

LiHMDS (2.5 eq), THF, -78 °C

LiHMDS (2.0 eq), THF, -78 °C

LiHMDS (1.2 eq), THF, -78 °C (100 mg scale)

NaHMDS (2.5 eq), THF, -78 °C, 2 h

NaHMDS (2.5 eq), THF, -78 °C, 0.5 h

NaHMDS (1.2 eq), THF, -78 °C, 2 h

NaHMDS (2.5 eq), LiCl (2.5 eq), THF, -78 °C,
0.5 h

44% (5.3:1)

29% (18:1)

11% (>25:1)

50% (4.5:1)

61% (4.3:1)

23% (5.2:1)

42% (14:1)

56%

64%

80%

32%

37%

67%

55%
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the geometry of the metallated enolate derived from 6D,14 we consider the E-enolate might be formed, in 

contrast to the Z-enolate adopted for the enolate derived from the 2,3-O-TBS derivative (6A).7f,7h  As 

depicted in Scheme 5, the resulting E-enolate attacked preferentially to the re-face of imine derived from 

5, which was placed in the less-congested rear side, thus leading to 7 D.  
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Scheme 5.  A plausible transition-state model for the diastereoselectivity achieved using 6D 

 

Finally, we explored the detachment of the sugar template from diastereomerically enriched 7 D by 

alkaline hydrolysis (Scheme 6).  The conditions and results of the hydrolysis are shown in Table 3.  

Unfortunately, 1 M aqueous LiOH-mediated hydrolysis in MeOH resulted in partial epimerization of the 

-carbon of the ester moiety (entry 1).  This drawback was overcome in the presence of aqueous 

hydrogen peroxide,15 resulting in the efficient removal of the sugar template (8) (R=Me) without the 

troublesome epimerization (entries 2 and 3). The optimal conditions were a 0.2 M aqueous LiOH solution 

in the presence of 6.0 equivalents of H2O2. Using these conditions, almost pure 4 was obtained in 82% 

yield, and the sugar template (8) (R=Me) was recovered quantitatively in a 100 mg scale.16 
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Table 3. 

Entry Conditions Yields of 4 ( :  ratio) and 8 (R=Me)

1

2

3

1 M aq. LiOH:MeOH =1:1

1 M aq. LiOH:MeOH =1:1, aq. H2O2 (1.5 eq)

0.2 M aq. LiOH:MeOH=1:1, aq. H2O2 (6.0 eq) (100 mg scale)

quant. (2.4:1) and 87%

56% (>25:1) and 79%

82% (>25:1) and quant.
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In summary, we have developed a novel asymmetric synthesis of a key intermediate (4) for the 

1 -methylcarbapenem synthesis. The Mannich-like reaction of D-glucose-derived 4-O-propionate (6D) 

and azetidin-2-one (5) produced the adduct (7 D) with high diastereoselectivity, from which the desired 

4 was obtained after removal of the sugar template part.  
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