HETEROCYCLES, Vol. 72, 2007, pp. 207 - 212. © The Japan Institute of Heterocyclic Chemistry Received, 15th January, 2007, Accepted, 19th February, 2007, Published online, 21st February, 2007. COM-07-S(K)60

SYNTHESIS OF THE JK RING FRAGMENTS OF YESSOTOXIN AND 42,43,44,45,46,47,55-HEPTANOR-41-OXOYESSOTOXIN

Koji Watanabe, Hiroaki Minato, Michio Murata, and Tohru Oishi*

Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan E-mail: oishi@ch.wani.osaka-u.ac.jp

Abstract – The JK ring fragment (**7**) of 42,43,44,45,46,47,55-heptanor-41-oxoyessotoxin was synthesized via enyne metathesis and 6-*exo* cyclization of a hydroxy epoxide. Conversion of **7** into the JK ring fragment (**6**) of yessotoxin was achieved in a single step by treatment with an alkenyllithium.

Yessotoxin (YTX, 1)¹ is a disulfated polyether toxin produced by the dinoflagellate *Protoceratium* and by Lingulodinium species (Figure 1).² Although YTX was first isolated in association with diarrhetic shellfish poisoning (DSP), it has been removed from the category of DSP toxins due to a lack of diarrhoegenicity.³ A number of YTX congeners, for instance $42,43,44,45,46,47,55$ -heptanor-41oxoyessotoxin (2) and $3-5$ (Figure 1),⁴ have been identified, whose structural diversity is focused on the K ring and side chains. YTX has recently been shown to exhibit intriguing biological activities, e.g., (i) cytotoxicity against human tumor cell lines,⁵ (ii) activation of caspases via mitochondrial signal transduction pathways, 6 and (iii) activation of phosphodiesterases.⁷ Meanwhile, structure-activity relationship studies using YTX congeners have been hampered by their scarce availability from natural sources. During the course of our synthetic studies of YTX and its congeners, 8 we developed an efficient method for convergent synthesis of the CDEF and FGHI ring systems via α -cyano ethers.⁹ Herein, we describe a synthesis of the JK ring fragments of YTX and **2**. 10

As shown in Scheme 1, the JK ring fragment (**6**) of YTX could be retrosynthetically disconnected into the JK ring fragment (**7**) of **2** and alkenylstannane (**8**). The methylketone (**7**) would be derived from allylic alcohol (**9**) via Sharpless asymmetric epoxidation and 6-*exo* cyclization of a hydroxy epoxide, and

[§] Dedicated to Professor Yoshito Kishi on the occasion of his $70th$ birthday.

Figure 1. Structures of yessotoxin (**1**) and its congeners (**2**-**5**).

incidentally, construction of the K ring system based on a similar method has recently been reported by Kadota *et al*. 10 For expeditious construction of the conjugated diene system of **9**, we envisaged enyne metathesis¹¹ of alkyne (**10**) and 2-methyl-2-propen-1-ol (**11**).

Scheme 1. Synthesis plan for the JK ring fragments.

Synthesis of the JK ring fragment began with a one-pot preparation of triflate (13) from diol $(12)^{9,12}$ by Mori's protocol¹³ (Scheme 2). Alkylation of 13 with lithium trimethylsilylacetylide, followed by removal of the TMS group afforded alkyne (**10**) in 68% yield for three steps. One of the key steps of the present synthesis, enyne metathesis of **10** and 2-methyl-2-propen-1-ol (**11**) using Grubbs' second generation catalyst,¹⁴ proceeded smoothly to afford *E*-diene (9) as the major product (*E* : $Z = 7 : 1$) in 57% yield with concomitant formation of dienal (**14**) (10%) as a byproduct, which was readily converted to **9** by Luche reduction.¹⁵ Portionwise addition of the Grubbs catalyst was important for the selective formation of the *E*-diene. For instance, addition of the Grubbs catalyst (0.5 eq) in one portion reduced the ratio of the *E*-diene ($E : Z = 3 : 1$). Sharpless epoxidation of **9**, followed by removal of the TBS group with TBAF

furnished hydroxy epoxide (15). Acid catalyzed 6 -*exo* cyclization¹⁶ of 15 by treatment with CSA in dichloromethane afforded *vic*-diol (**16**). Oxidative cleavage of the glycol (**16**) with NaIO4 resulted in the formation of the JK ring fragment (**7**) of **2**.

Scheme 2. *Reagents and conditions:* (a) Tf_2O , 2,6-lutidine, CH_2Cl_2 , -78 °C to -60 °C, 40 min, then TBSOTf, -78 °C to -55 °C, 3 h; (b) trimethylsilylacetylene, *n*-BuLi, HMPA, THF, -78 °C to -55 °C, 30 min; (c) K_2CO_3 , MeOH, rt, 15 h, 68% (3 steps); (d) Grubbs' 2nd generation cat. (0.1 eq + 0.1 eq + 0.05 eq), 2-methyl-2-propen-1-ol (10 eq), toluene, reflux, 3 h, **9**: 57%, **14**: 10%; (e) CeCl3·7H2O, NaBH4, EtOH, 0 °C, 30 min, 50%; (f) D-(-)-DET, Ti(O*i*-Pr)4, TBHP, MS4A, CH₂Cl₂, -20 °C, 1 h; (g) TBAF, THF, rt, 46% (2 steps); (h) CSA, CH₂Cl₂, 0 °C, 3 h; (i) NaIO4, THF, pH 7 buffer, rt, 6 h, 50% (2 steps).

We then turned our attention to the synthesis of the JK ring fragment (**6**) of YTX. The alkenylstannane (**8**) was prepared as shown in Scheme 3. Treatment of 2,3-dibromo-1-propene (**17**) with vinylmagnesium bromide in THF at 60 °C gave 2-bromo-1,4-pentadiene (18) ,¹⁷ which was purified by distillation. Stille coupling of 18 using 2.0 equivalent of *trans*-1,2-bis(tri-*n*-butylstannyl)ethylene with Pd(PPh₃)₄ gave the stannane (**8**).18 Treatment of the methylketone (**7**) with alkenyllithium (**19**) generated from **8** resulted in the formation of desired 6 and its 41-epimer (20) $(6:20 = 1.2 : 1)$ in 66% yield, which were separated by silica gel chromatography (Scheme 4).¹⁹ Judging from the ¹H NMR spectra,²⁰ chemical shifts of Me-41 and H-42 of $\bf{6}$ (δ 1.39 and 5.82, respectively) more resembled those of YTX (δ 1.43 and 5.86, respectively) than those of **20** (δ 1.29 and 5.99), and therefore, we assigned the structures as depicted in Scheme 4. Although improvement of the stereoselectivity of the final alkylation step is required, the present method would be a straightforward way for the diverse synthesis of YTX congeners, not only naturally occurring but also 41-epimers useful for structure-activity relationship studies.

Scheme 3. *Reagents and conditions:* (a) vinylmagnesium bromide (2.0 eq), THF, 60 °C, 15 h, 7% (isolated yield, ca. 50% conversion yield); (b) *trans*-1,2-bis(tri-*n*-butylstannyl)ethylene (2.0 eq), Pd(PPh₃)₄ (0.15 eq), benzene, reflux, 12 h, 37% .

Scheme 4. *Reagents and conditions:* (a) *n*-BuLi, **8**, THF, -78 °C, 3 min, then **7**, -78 °C to -55 °C, 1 h, 66%.

In conclusion, the JK ring fragment (**7**) of 42,43,44,45,46,47,55-heptanor-41-oxoyessotoxin (**2**) was synthesized via enyne metathesis and 6-*exo* cyclization of a hydroxy epoxide. Single step conversion of **7** into the JK ring fragment (**6**) of YTX has been achieved by treatment with the alkenyllithium (**19**) prepared from stannane (**8**). Further studies directed towards the total synthesis of YTX and its congeners are currently in progress in our laboratory.

ACKNOWLEDGEMENTS

This work was supported by Grant-in-Aid for Scientific Research (B) (Nos. 15350024, 18350021) from JSPS and for Scientific Research on Priority Areas (No. 16073211) from MEXT.

REFERENCES AND NOTES

- 1. M. Murata, M. Kumagai, J. S. Lee, and T. Yasumoto, *Tetrahedron Lett.*, 1987, **28***,* 5869; M. Satake, K. Terasawa, Y. Kadowaki, and T. Yasumoto, *Tetrahedron Lett.*, 1996, **37***,* 5955; H. Takahashi, T. Kusumi, Y. Kan, M. Satake, and T. Yasumoto, *Tetrahedron Lett.*, 1996, **37***,* 7087.
- 2. B. Paz, P. Riobó, M. L. Fernández, S. Fraga, and J. M. Franco, *Toxicon*, 2004, **44**, 251.
- 3. T. Aune, R. Sørby, T. Yasumoto, H. Ramstad, and T. Landsverk, *Toxicon*, 2002, **40**, 77.
- 4. P. Ciminiello, E. Fattorusso, M. Forino, and R. Poletti, *Chem. Res. Toxicol.*, 2001, **14**, 596; P.

Ciminiello, E. Fattorusso, M. Forino, R. Poletti, and R. Viviani, *Eur. J. Org. Chem.*, 2000, 291; M. Satake, K. Terasawa, Y. Kadowaki, and T. Yasumoto, *Tetrahedron Lett.*, 1996, **37***,* 5955; M. Satake, T. Ichimura, K. Sekiguchi, S. Yoshimatsu, and Y. Oshima, *Nat. Toxins,* 1999, **7**, 147.

- 5. M. Konishi, X. Yang, B. Li, C. R. Fairchild, and Y. Shimizu, *J. Nat. Prod.,* 2004, **67**, 1309.
- 6. C. Malaguti, P. Ciminiello, E. Fattorusso, and G. P. Rossini, *Toxicology in Vitro,* 2002, **16**, 357; M. S. Korsnes, D. L. Hetland, A. Espenes, M. A. Tranulis, and T. Aune, *Toxicology in Vitro,* 2006, **20**, 1077; M. S. Korsnes, D. L. Hetland, A. Espenes, and T. Aune, *Toxicology in Vitro,* 2006, **20**, 1419.
- 7. A. Alfonso, L. de la Rosa, M. R. Vieytes, T. Yasumoto, and L. M. Botana, *Biochem. Pharmacol.*, 2003, **65**, 193.
- 8. Synthetic studies of yessotoxin, see: K. Suzuki and T. Nakata, *Org. Lett.,* 2002, **4**, 3943; K. Suzuki and T. Nakata, *Org. Lett.,* 2002, **4**, 2739; Y. Mori, K. Nogami, H. Hayashi, and R. Noyori, *J. Org. Chem.,* 2003, **68**, 9050; Y. Mori, T. Takase, and R. Noyori, *Tetrahedron Lett.,* 2003, **44***,* 2319; Y. Mori and H. Hayashi, *Tetrahedron,* 2002, **58***,* 1789; I. Kadota, H. Ueno, Y. Sato, and Y. Yamamoto, *Tetrahedron Lett.,* 2006, **47***,* 89; I. Kadota, H. Ueno, and Y. Yamamoto, *Tetrahedron Lett.,* 2003, **44***,* 8935.
- 9. T. Oishi, K. Watanabe, and M. Murata, *Tetrahedron Lett.,* 2003, **44***,* 7315; K. Watanabe, M. Suzuki, M. Murata, and T. Oishi, *Tetrahedron Lett.,* 2005, **46**, 3991; T. Oishi, M. Suzuki, K. Watanabe, and M. Murata, *Tetrahedron Lett.*, 2006, **47**, 3975; T. Oishi, M. Sizuki, K. Watanabe, and M. Murata, *Heterocycles*, 2006, **69**, 91.
- 10. Recently, synthesis of the IJK ring system lacking the olefinic side chain was reported by Kadota *et al*. I. Kadota, T. Abe, Y. Sato, C. Kabuto, and Y. Yamamoto, *Tetrahedron Lett.*, 2006, **47**, 6545.
- 11. S. T. Diver and A. J. Giessert, *Synthesis*, 2004, 466; H.-Y. Lee, B. G. Kim, and M. L. Snapper, *Org. Lett.*, 2003, **5**, 1855; K. Tonogaki and M. Mori, *Tetrahedron Lett.*, 2002, **43**, 2235; S. Rodriguez-Conesa, P. Candal, C. Jimenez, and J. Rodriguez, *Tetrahedron Lett.*, 2001, **42**, 6699.
- 12. K. C. Nicolaou, D. A. Nugiel, E. Couladouros, and C.-K. Hwang, *Tetrahedron*, 1990, **46**, 4517.
- 13. Y. Mori and H. Hayashi, *J. Org. Chem.,* 2001, **66**, 8666; Y. Mori, K. Yaegashi, and H. Furukawa, *J. Am. Chem. Soc.,* 1996, **118**, 8158.
- 14. G. C. Fu, S. T. Nguyen, and R. H. Grubbs, *J. Am. Chem. Soc.,* 1993, **115**, 9856; P. Schwab, M. B. Ftance, J. W. Ziller, and R. H. Grubbs, *Angew. Chem., Int. Ed. Engl.,* 1995, **34**, 2039.
- 15. J.-L. Luche, *J. Am. Chem. Soc.,* 1978, **100**, 2226.
- 16. K. C. Nicolaou, M. E. Duggan, C.-K. Hwang, and P. K. Somers, *Chem. Commun.*, 1985, 1359; K. C. Nicolaou, C. V. C. Prasad, P. K. Somers, and C.-K. Hwang, *J. Am. Chem. Soc.*, 1989, **111**, 5330.
- 17. H. Normant, *Compt. rend.*, 1954, **239**, 1811.
- 18. B. Salem, E. Delort, P. Klotz, and J. Suffert, *Org. Lett.*, 2003, **5**, 2307.

19. Spectral data of 6: ¹H NMR (500 MHz, CDCl₃) δ 7.47-7.45 (2H, m, Ph), 7.37-7.34 (3H, m, Ph), 6.30 (1H, d, $J = 16.0$ Hz, H43), 5.88 (1H, dddd, $J = 17.0$, 10.5, 6.5, 6.5 Hz, H46), 5.82 (1H, d, $J = 16.0$ Hz, H42), 5.08 (1H, dddd, *J* = 17.0, 1.5, 1.5, 1.5 Hz, H47), 5.05 (1H, d, *J* = 2.0 Hz, 44=CH2), 5.04 (1H, dddd, *J* = 10.5, 1.5, 1.5, 1.5 Hz, H47), 5.02 (1H, d, *J* = 2.0 Hz, 44=CH2), 4.98 (1H, s, 39=CH2), 4.79 (1H, s, 39=CH2), 4.18 (1H, ddd, *J* = 11.5, 10.5, 4.5 Hz, H36), 3.88 (1H, s, H40), 3.86 (1H, d, *J* = 10.0 Hz, H32), 3.73 (1H, dd, *J* = 11.5, 4.5 Hz, H34), 3.66 (1H, d, *J* = 10.0 Hz, H32), 3.45 (1H, ddd, *J* = 12.0, 10.5, 4.5 Hz, H37), 2.97 (2H, dd, *J* = 6.5, 1.5 Hz, H45), 2.65 (1H, dd, *J* = 12.0, 12.0 Hz, H38), 2.43 (1H, dd, *J* = 12.0, 4.5 Hz, H38), 2.17 (1H, ddd, *J* = 11.5, 4.5, 4.5 Hz, H35eq), 1.67 (1H, ddd, *J* = 11.5, 11.5, 11.5Hz, H35ax), 1.48 (3H, s, 33-Me), 1.39 (3H, s, 41-Me); ESI-MS 461 $(M+Na^+).$

Spectral data of 20: ¹H NMR (500 MHz, CDCl₃) δ 7.46-7.44 (2H, m, Ph), 7.36-7.34 (3H, m, Ph), 6.41 (1H, d, *J* = 16.0 Hz, H43), 5.99 (1H, d, *J* = 16.0 Hz, H42), 5.92 (1H, ddd, *J* = 17.0, 10.5, 6.5, 6.5 Hz, H46), 5.11 (1H, d, *J* = 2.0 Hz, 44=CH2), 5.10 (1H, dd, *J* = 17.0, 1.5 Hz, H47), 5.06 (1H, d, *J* $= 2.0$ Hz, 44=CH₂), 5.04 (1H, dd, $J = 10.5$, 1.5 Hz, H47), 4.98 (1H, s, 39=CH₂), 4.93 (1H, s, 39=CH2), 4.08 (1H, ddd, *J* = 11.5, 9.5, 4.5 Hz, H36), 3.90 (1H, s, H40), 3.85 (1H, d, *J* = 10.0 Hz, H32), 3.71 (1H, dd, *J* = 11.5, 4.5 Hz, H34), 3.66 (1H, d, *J* = 10.0 Hz, H32), 3.44 (1H, ddd, *J* = 12.5, 9.5, 5.0 Hz, H37), 3.01 (2H, d, *J* = 6.5 Hz, H45), 2.70 (1H, dd, *J* = 12.5, 12.5 Hz, H38), 2.44 (1H, dd, *J* = 12.5, 5.0 Hz, H38), 2.00 (1H, ddd, *J* = 11.5, 4.5, 4.5 Hz, H35eq), 1.60 (1H, ddd, *J* = 11.5, 11.5, 11.5 Hz, H35ax), 1.46 (3H, s, 33-Me), 1.29 (3H, s, 41-Me); ESI-MS 461 (M+Na⁺).

20. The carbon numbering of compounds in this article corresponds to that of yessotoxin.