HETEROCYCLES, Vol. 73, 2007, pp. 187 - 190. © The Japan Institute of Heterocyclic Chemistry Received, 21st June, 2007, Accepted, 20th July, 2007, Published online, 20th July, 2007. COM-07-S(U)23

GOLD-CATALYZED CYCLIZATION REACTION OF ALKYNYL *O***-***TERT***-BUTYLCARBAMATES**

\mathbf{H} ideto Miyabe, $\mathrm{a,b}*\mathbf{Y}$ uichi Sami, $\mathrm{a}^* \mathbf{T}$ akeaki Naito, c^* and Yoshiji Takemoto $\mathrm{a}*\mathbf{Y}$

^aGraduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. E-mail: takemoto@pharm.kyoto-u.ac.jp b School of Pharmacy, Hyogo University of Health Sciences, Minatojima, Kobe 650-8530, Japan. E-mail: miyabe@huhs.ac.jp 'Kobe Pharmaceutical University, Motoyamakita, Higashinada, Kobe 658-8558, Japan. E-mail: taknaito@kobepharma-u.ac.jp

Abstract – Gold-catalyzed cyclization of alkynyl *O*-*tert*-butylcarbamates having *N*-benzyloxy group provided the 6-*endo* cyclized products selectively. Cascade reaction of *O*-*tert*-butylcarbamates having an enyne moiety was also examined.

Cyclic enols **A** and **B** are attractive synthetic intermediates. In general, the cyclic enol **A** can be prepared by the fixation of CO_2 with propargylic alcohols or amines via 5- exo cyclization.¹⁻³ In contrast, less is known about preparation of cyclic enol **B**; 4,5 thus, the development of effective 6-*endo* cyclization reaction of propargylic alcohol or amine derivatives remains a major challenge. Recently, mercuric triflate has been reported to promote the 6-*endo* cyclization of propargylic *O*-*tert*-butylcarbonates giving cyclic enol **B** by Nishizawa's group.⁶ In this paper, we describe the gold (I)-catalyzed method for 6-*endo* cyclization of propargylic *O*-*tert*-butylcarbamates and the effect of *N*-substituents on nitrogen atom on 5-*exo*/6-*endo* selectivity.

Figure 1. Cyclic enols **A** and **B**

To study the effect of gold catalysts on reactivity, our experiments began with the investigation of reaction of propargylic amine derivatives **1a-d** (Scheme 1).⁷ All reactions were run in CH₂Cl₂ at room temperature. Representative results are shown in Table 1. Gold (III) catalyst using AuCl₃ and AgOTf accelerated the cyclization of **1a** to give the 6-*endo* cyclized product **2a** in 82% yield (entry 1). Although the combination of AuCl₃ and AgNTf₂ decreased the cyclization rate (entry 2), the selective formation of

endo-product **2a** was also observed in reaction using gold (I) catalyst using AuCl(PPh₃) and AgNTf₂ (entry 3). Additionally, AuNTf₂(PPh₃), prepared from AuCl(PPh₃) and AgNTf₂, promoted the reaction with good activity to form the product **2a** in 93% yield after being stirred for 24 h (entry 4). The *N*-substituents (R) had an impact on 5-*exo*/6-*endo* selectivity. Hydroxylamine derivative **1b** (R = OMe) has also shown the good 6-*endo* selectivity (entry 5). In contrast, the reaction of **1c** ($R = Bn$) and **1d** ($R = Bn$) Ph) took place with lower 5-*exo*/6-*endo* selectivities (entries 6 and 7).

Scheme 1. Gold-Catalyzed Reaction of **1a-d**

Entry	Substrate	Catalyst	Product (% Yield)		
1 ^a	1a	$AuCl3$, AgOTf	2a(82)		
$2^{\rm b}$	1a	$AuCl3$, AgNTf ₂	2a(20)		
3 ^c	1a	AuCl(PPh ₃), AgNT f_2	2a(83)		
4 ^d	1a	AuNTf ₂ (PPh ₃)	2a(93)		
5°	1 _b	$AuCl(PPh3), AgNTf2$	2b(49)		
6 ^c	1 _c	AuCl(PPh ₃), AgNTf ₂	$2c(82) + 3c(10)$		
7°	1 _d	$AuCl(PPh3), AgNTf2$	$2d (46) + 3d (23)$		

Table 1 Gold-Catalyzed Reaction of Carbamates **1a-d**

^aReaction carried out with AuCl₃ (6 mol%) and AgOTf (18 mol%) for 1 h. ^bReaction carried out with AuCl₃ (6 mol%) and AgNTf₂ (18 mol%) for 1 h. ^cReactions carried out with AuCl(PPh₃) (6 mol%) and AgNTf₂ (6 mol%) for 1 h. dReaction carried out with AuNTf₂(PPh₃) (6 mol%) for 24 h.

We next studied the effect of substituents $(R^1, R^2 \text{ and } R^3)$ of carbamates **1e-k** on 5-*exo*/6-*endo* selectivity (Scheme 2). The 6-*endo* cyclized compounds **2e-g** were the predominant products in reaction of hydroxylamine derivatives 1e-g having the phenyl or hydroxymethyl group as a substituent (R²) (Table 2, entries 1-3). More interestingly, the effect of hydroxylamine moiety was confirmed by testing the reaction of butylamine derivative **1h**, which gave the 5-*exo* cyclized product **3h** as a major product (entry 4). The *Z*-configuration of **3h** was confirmed by NOE experiment. ⁶ In contrast to substrates **1e-h**, terminal alkyne derivatives **1i-k** gave the 5-*exo* cyclized products **3i-k** exclusively (entries 5-7).

Scheme 2. Gold (I)-Catalyzed Reaction of **1e-k**

Entry	Substrate	R ¹	R^2	R^3	Product (% Yield)	
$\mathbf{1}$	1e	OBn	Ph	H	$2e(62) + 3e(8)$	
2	1 _f	OBn	CH ₂ OH	H	2f(71)	
3	1g	OMe	Ph	H	$2g(63) + 3g(11)$	
$\overline{4}$	1 _h	Bu	Ph	H	$2h(14) + 3h(83)$	
5	1 _i	OBn	H	H	3i(79)	
6	1j	Bn	H	H	3j(93)	
$\overline{7}$	1 _k	Bn	H	Me	3k(67)	

Table 2 Cyclization of Carbamates **1e-k** Using AuCl(PPh₃) and AgNTf₂^a

^aAll reactions were carried out with AuCl(PPh₃) (6 mol%) and AgNTf₂ (6 mol%) for 1 h.

Scheme 3. Regioselective Gold (I)-Catalyzed Hydration of Substrate **4**

The interest regioselectivity was also observed in the hydration of substrate **4** (Scheme 3). Ketone **5** was obtained in 81% yield without the formation of isomer **6**, probably due to 6-*endo* type assistance of carbamate moiety as shown in Scheme 3.

Scheme 4. Gold (I)-Catalyzed Cascade Reaction

Based on these studies, we finally explored the cascade reaction of enynes **7a** and **7b** (Scheme 4). As expected, the cyclized products **8a** and **8b** were isolated in 67% and 59% yields, respectively, through the cascade process involving 6-*endo* cyclization.

GENERAL EXPERIMENTAL PROCEDURE

A solution of starting material (0.04 mmol), AuCl(PPh₃) (0.06 eq) and AgNTf₂ (0.06 eq) in CH₂Cl₂ (3.0 mL) was stirred for 1 h under argon atmosphere at rt. The organic solvent was removed under reduced pressure. Purification of the residue by column chromatography (hexane/AcOEt) afforded products.

ACKNOWLEDGEMENTS

This work was supported in part by a Grant-in-Aid for Scientific Research (C) (H.M.) and Scientific Research on Priority Areas 17035043 (Y.T. and H.M.) from the Ministry of Education, Culture, Sports, Science and Technology of Japan, 21st Century COE Program "Knowledge Information Infrastructure for Genome Science".

REFERENCES

- 1. For some examples, see: M. Feroci, M. Orsini, G. Sotgiu, L. Rossi, and A. Inesi, *J. Org. Chem.*, 2005, **70**, 7795; Y. Gu, Q. Zhang, Z. Duan, J. Zhang, S. Zhang, and Y. Deng, *J. Org. Chem.*, 2005, **70**, 7376; M. Shi and Y.-M. Shen, *J. Org. Chem.*, 2002, **67**, 16.
- 2. For an example of gold (I)-catalyzed 5-*exo* cyclization of propargylic *tert*-butylcarbonates, see: A. Buzas and F. Gagosz, *Org. Lett.*, 2006, **8**, 515.
- 3. For related examples of the fixation of $CO₂$ with epoxides or aziridines, see: F. Shi, O. Zhang, Y. Ma, Y. He, and Y. Deng, *J. Am. Chem. Soc.*, 2005, **127**, 4182; A. Sudo, Y. Morioka, F. Sanda, and T. Endo, *Tetrahedron Lett.*, 2004, **45**, 1363.
- 4. J. D. Buynak, R. Chandrasekaran, A. G. M. Barrett, and R. P. Attrill, *J. Org. Chem.*, 1985, **50**, 5362.
- 5. S. Suga, A. Nagaki, Y. Tsutsui, and J. Yoshida, *Org. Lett.*, 2003, **5**, 945.
- 6. H. Yamamoto, M. Nishiyama, H. Imagawa, and M. Nishizawa, *Tetrahedron Lett.*, 2006, **47**, 8369.
- 7. For recent examples of gold-catalyzed reaction of carbonyl moiety with C-C multi bonds, see: M. Yu, G. Zhang, and L. Zhang, *Org. Lett.*, 2007, **9**, 2150; J. Piera, P. Krumlinde, D. Strübing, and J.-E. Bäckvall, *Org. Lett.*, 2007, **9**, 2235; B. A. B. Prasad, F. K. Yoshimoto, and R. Sarpong, *J. Am. Chem. Soc.*, 2005, **127**, 12468.