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Abstract – (+)-Komaroviquinone (1) was synthesized from enone 8 in twelve 

steps.  Three novel routes were developed to produce key intermediate dienone 

11.  Two additional noteworthy steps are a regiospecific bromohydrin formation 

to oxidize C(7) and a second regio- and stereospecific bromohydrin formation to 

introduce the β-C(10) alcohol.

During a systematic study of the organic extracts of the semishrub Dracocephalum komarovi Lipsky,1 

which grows between 2300-3600 meters above sea level in mountains of western Uzbekistan, Honda and 

co-workers isolated komaroviquinone (1)2 and coulterone (2).2,3  These compounds exhibit trypanocidal 

activity against the causative agent of Chagas’ disease in Central and South America.4  The preceding 

manuscript detailed our synthesis of (±)-15 (Scheme 1) featuring a cyclialkylation strategy6 to construct 
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6,7,6-fused enone 7, a selective benzylic oxidation of acetate 6 to provide ketone 5, and the introduction 

of a β-oriented C(10) hydroxyl group (cf. 5 → 4). The strongly acidic conditions used to deprotect the 

C(11) and C(14) methyl ethers of ketone 4 did not permit the isolation and characterization of coulterone 

(3) or p-benzoquinone 2, both of which must be formed before intramolecular hemi-acetal formation 

produces komaroviquinone. 

 

In this study an enantiospecific synthesis of (+)-komaroviquinone was achieved without having to oxidize 

the non-functionalized C(7) methylene unit.7,8  In related studies9 we have converted achiral enone 7 into 

alkene (S)-10 via a two-step process (Scheme 2), with the requisite C(5) chirality and a 

C(1),C(10)–double bond.  If achiral enone 7 can be converted into dienone 11, then 11 should be 

converted into chiral diene 12 using the same reactions that transformed enone 7 into alkene (S)-10.  

Several well-known strategies can be envisioned to selectively oxidize the C(6),C(7)–double bond of 

diene (S)-12.  The conversion of the trisubstituted double bond of (S)-13 to a β-oriented C(10) hydroxyl 

group (cf. 4) utilizes the same route that we reported in our synthesis of racemic komaroviquinone.  
Thus, our initial goal was to develop an efficient synthesis of dienone 11.  

 

 
Several reactions were tried to extend the conjugation of enone 7, however, these attempts either failed to 

effect reaction or gave unwanted products (Scheme 3).  Stirring 7 with 30% aqueous hydrogen peroxide 

and 6 M aqueous NaOH10 produced epoxide 14 in 91% yield.  When 14 was treated with 

p-toluenesulfonic acid in refluxing dichloromethane, allylic alcohol 15 was generated, which rapidly 

dehydrated to give diene 16.  We hoped that diene 16 would rearrange to dienone 11 under acidic 

conditions via intermediate 17, but prolonged reaction times and/or harsher reaction conditions failed to 

achieve this isomerization.  Knowing that transition metals can rearrange isolated double bonds to a 
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styrenyl position,11 we heated diene 16 in the presence of a catalytic amount of Ru(PPh3)3Cl2.  These 

conditions produced dienone 11 in 78% yield. 
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Concurrent with our efforts to prepare dienone 11 from enone 7 were efforts to synthesize additional 

cyclialkylation precursors having an ether substituent either at C(6) or at C(7), i.e., dienones 19 and 23, 

respectively (Scheme 4).  We believed that treatment of either dienone with a Lewis acid would form the 

central seven-membered ring (cf. 20 and 24), followed by the in situ loss of ethanol, to give dienone 11. 
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Addition of 1-lithio-1-ethoxyethylene (18)12 to ketone 8,13 followed by careful hydrolysis, gave an 85% 

yield of cyclialkylation precursor 19.  To our disappointment, treatment of 19 with a Lewis acid did not 
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produce tricycle 20 but instead gave compound 2114 in 65% yield.  Similarly, cyclialkylation precursor 

23 was obtained in 85% yield by adding the anion derived from Z-2-ethoxyvinyl bromide (22)15 to 8, 

followed by mild acid hydrolysis.  In contrast to dienone 19, exposure of cyclialkylation precursor 23 to 

excess BF3-Et2O provided dienone 11 in 30% yield along with several unknowns; TiCl4 gave a 40% 

yield of 11 and similar byproducts. 

 

Besides vinyl anions 18 and 22, we found that the anion of ethoxyacetylene, or Aren’s reagent (25),16,17 

also reacts in 1,2-fashion with sterically hindered enone 8 (Scheme 5).  In theory, enynone 26 could 

cyclize to produce dienone 27, having a latent C(7) carbonyl moiety.  However, analysis of Drieding 

models of enynone 26 indicated that the distance between the terminal C(7) alkyne carbon and the “6” 

carbon of the aryl ring is much greater than that of a carbon–carbon single bond;  not surprisingly, 

enynone 26 does not undergo cyclialkylation.   Lindlar reduction of the triple bond of 26 cleanly gave 

dienone 23, which formed dienone 11 in 66% yield upon treatment with excess Lewis acid.  In 

retrospect, our initial synthesis of dienone 11 began with enone 7 and required only three steps to give a 

53% overall yield of 11 (Scheme 3).  The most direct sequence (i.e., Scheme 4) converted enone 8 to 

cyclization precursor 23, but formed tricyclic dienone 11 in <34% overall yield.  However, reacting 

Aren’s reagent with enone 8, followed by Lindlar hydrogenation and cyclialkylation, gave a 51% yield of 

dienone 11 and avoided the conversion of enone 8 into enone 7.  Thus, the Aren’s reagent/Lindlar 

reduction/cyclialkylation sequence represents our best route to prepare key intermediate 11.  

 
 
As outlined in Scheme 2, the asymmetric 1,2-reduction of the C(1) carbonyl of 7 using Corey’s CBS 

procedure18 produced allylic alcohol 9 in excellent chemical yield and high ee, while the use of Meyer’s 
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Mitsunobu-based allylic transposition19 to alcohol 9 furnished alkene (S)-10 in good yield.  The 

application of these procedures to dienone 11 gave (S)-diene 12 (Scheme 6).  Diene (S)-12 was treated 

with Jones reagent in hopes of first hydrating the styrenyl double bond, followed by the in situ oxidation 

of the intermediate benzylic alcohol.  However, dienone 11 was obtained in quantitative yield.20  

Conformational analysis indicated that diene (S)-12 favors a conformation (cf. 12i) in which the 

C(6),C(7)-π system is not coplanar with, and hence not conjugated with, the aromatic ring;  therefore, it 

reacts as a simple alkene.  Treating (S)-diene 12 with m-CPBA gave epoxide 30 through addition to the 

more accessible α-face of the molecule.  Exposure of 30 to LAH produced tertiary alcohol 31 in high 

yield.21
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Examination of a Drieding molecular model of dienone 11 suggested that, while the C(5), C(10)–double 

bond was coplanar with the C(1) carbonyl, the C(6),C(7)–double bond was not conjugated with either the 

aryl ring or the A-ring enone.  This suggested that bromohydrin formation would involve only the 

electron–rich C(6),C(7)–double bond to give bromonium ion 32 and that the steric influence of the C(4) 

gem-dimethyl group would cause the nucleophile present to add in a trans fashion to the C(7) benzylic 

position (Scheme 7).  When dienone 11 was treated with NBS in glacial acetic acid as the solvent, trans 

bromo acetate 33 was produced as a racemic mixture.  Removal of the C(6) bromine atom from 33 was 

accomplished using free radical conditions to provide racemic 34.  Asymmetric reduction of the C(1) 

carbonyl of 34 using Corey’s CBS procedure afforded diastereomeric allylic alcohols 35 and 36, which 

were then converted into isomeric alkenes 37 and 38 in 88% combined yield using Meyer’s allylic 

transposition protocol.  Removal of the acetate moiety by means of LAH reduction, followed by 

oxidation of the resulting benzylic alcohols with Jones reagent, gave ketone (S)-39 in excellent overall 

yield.   
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Scheme 7 also depicts the final steps needed to convert alkene 39 into the dimethyl ether of coulterone (4).   

Treatment of alkene 39 with NBS in the presence of water introduces a C(10) β-oriented hydroxyl group, 

as well as an α-oriented bromine atom at C(1).  The stereochemistry shown ensues because  
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bromonium ion formation (cf. 40) occurs from the α-face of the trisubstituted double bond which 

introduces the C(10) hydroxyl group from the β-face of the molecule.  Removal of the C(6) bromine 

atom from ketone 41 using n-Bu3SnH and AIBN produced hydroxy ketone (S)-4 as a single product in 

83% overall yield from ketone (S)-40.  Treatment with Ag(II)O / 7 N HNO3 deprotected the methyl aryl 

ethers and oxidized coulterone to p-benzoquinone 2 which underwent rapid intramolecular hemi-acetal 

formation to give komaroviquinone in good yield.  Our synthetic (+)-komaroviquinone displays 1H and 
13C NMR, IR, and MS spectra which are indistinguishable from those reported for the natural material 

and the optical rotation matches that of the natural material within experimental error.2      
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