HETEROCYCLES, Vol. 73, 2007, pp. 689 - 698. © The Japan Institute of Heterocyclic Chemistry Received, 1st July, 2007, Accepted, 5th September, 2007, Published online, 7th September, 2007. COM-07-S(U)48

A FACILE SODIUM ALKOXIDE MEDIATED RING OPENING OF UNACTIVATED *α***-DIENYL-***β***-LACTAMS: SYNTHESIS OF UNNATURAL MULTICOMPONENT** *β***–AMINODIENOIC ESTERS**

Amit Anand,^a Gaurav Bhargava,^a Maninder Singh Hundal,^b and Mohinder **P. Mahajan^a***

^a Department of Applied Chemistry, Guru Nanak Dev University, Amritsar – 143005, Punjab, India **^b** b Department of Chemistry, Guru Nanak Dev University, Amritsar – 143005,</sup> Punjab, India Phone +91 (0183)2258802-09*3320, Fax +91(183)2258819-20

E-mail: mahajanmohinderp@yahoo.co.in

Abstract – A convenient synthesis of variedly substituted, multi component unnatural *β*-aminodienoic esters by sodium alkoxide amidiolysis of unactivated ^α-dienyl-*β*-lactams is reported.

INTRODUCTION

β-Amino esters have attracted considerable attention of scientific community worldwide, owing to their biological assets and as synthons to various medicinally active compounds.¹ Antibiotics like cynanovinfin RR, nodularin and microcystin LR , to name a few, are some important drugs derived from *β*-amino carbonyls. Some *β*-amino esters are also known for their antifungal, hypoglycemic and antitumor (e.g. Taxol) activity.³ Apart from their lesser abundance as compared to their α -analogues, they play a major role as segments in peptidic natural products with various biological activities. For example, (R) - β -dopa (5,3,4-dihydroxy- β -phenylalanine) is responsible for blue-violet color in mushroom,⁵ *β*-tyrosine, a *β*-aryl-*β*-amino acid, is present in jasplakinolide which is a sponge metabolite with potent insecticidal, antifungal, and antihelminthic properties.⁶ Other representative examples include cryptophycin, a potent tumor-selective depsipeptide,⁷ and aminopeptidase inhibitors like bestatin and amastatin.⁸ The various approaches available till date for synthesis of β -amino esters/acids include their homologation, enzymatic resolution, addition of enolates to imines, Curtius rearrangement, conjugate addition of a nitrogen nucleophiles to *α*, *β*-unsaturated esters or imides and

amino hydroxylation.⁹ Recently Muraoka *et al.* and Ollevier *et al.* have engaged Mannich type reactions to construct such systems.¹⁰ The *β*-lactam skeleton has attracted significant interest amongst synthetic and medicinal chemists over the years mainly because of its core structure of natural and synthetic β -lactam antibiotics. The strain on the β -lactam nucleus makes it susceptible to molecules which cleave one or more of its bonds and forms the basis of design in *β*-lactam antibiotics. Recently Ojima *et al.* have utilized *β*-lactam synthon methodology for the synthesis of various organic and medicinal systems including anti-tumor taxol derivatives. 11

As part of our enduring interest in building heterocyclic systems of biological enormity, we have reported the synthesis¹² and π -facially selective DA cycloaddition reactions of variedly substituted ^α-dienyl *β*-lactams with various dienophiles.13 In view of the importance of *β-*aminoesters and lack of reports on the amidiolysis of *N-*aryl/alkyl-*β*-lactams, we report herein, facile sodium alkoxide mediated amidiolysis of unactivated α -dienyl- β -lactams resulting in excellent vields of multicomponent *β*-aminodienoic esters.

RESULTS AND DISCUSSION

The treatment of α -dienyl- β -lactams¹⁵ **1a-j** with sodium alkoxide in their corresponding alcohol solvent for 1-2h resulted in the isolation of products **3a-m** in excellent yields (75-92 %; **Scheme 1).**

The isolated and purified products were characterized as *β*-aminodienoic esters with the help of analytical data and spectral evidences. The mass spectrum of **3a,** for example, showed the molecular ion peak at 341

and its IR spectrum exhibited a sharp absorption at 1682 cm^{-1} due to the unsaturated ester carbonyl. The ¹H spectrum of **3a** showed a doublet of a doublet at δ 1.93 corresponding to the terminal methyl protons (*J=*7.4Hz, 1.5Hz), a singlet at *δ* 3.66 corresponding to the methoxy protons of ester group, a doublet at *δ* 5.07 corresponding to NH and an another doublet at δ 5.78 assigned to H², a multiplet at δ 6.26 corresponding to H⁶ proton and two multiplets at δ 6.56 and δ 6.62 due to H⁵ and H⁴. Its ¹³C spectra showed characteristic carbonyl at δ 167.4. The assigned structure was unambiguously supported by X-ray crystallographic studies. **(Figure 1)**.

 Figure: 1 An ORTEP diagram of **3a**

A plausible mechanism for the formation of *β*-aminodienoic esters utilizing *trans-*α-dienyl *β*-lactams probably involves the alkoxide abstraction of H^3 proton generating intermediate 4 which is followed by N1-C2 ring cleavage resulting in the formation of another intermediate **5.** Nucleophilic attack by a molecule of alcohol on ketene carbonyl then leads to resultant *β*-aminodienoic esters **3. (Scheme 2)** Recently, Troisi *et al.* have also reported the sodium methoxide amidiolysis of α-vinyl-*β*-lactam to afford *E:Z* (1:1) mixture of α -ethylidine-*β*-aminobenzenepropanoic acid methyl esters.¹⁶ The stereoselectivity observed in the present case of sodium alkoxide amidiolysis of 3-butadienyl-2-azetidinones leading to a single *E*-isomer **3** may be ascribed to the greater stability of butadienyl ketene intermediate **5.** The reaction proceeds through the preferred formation of this intermediate which is stable enough to exist in an all *E*-form / *S*-transoid conformation (Scheme-2) leading to the formation of thermodynamic product **3**. This is in contrast to the mixture of *E* and *Z* isomers (kinetically controlled products) when 3-vinyl-2-azetidinones were used as substrates. 16

Scheme 2

In order to generalize the mechanistic pathway and to rationalize the results, we have examined alkoxide mediated amidolysis of *cis-N-*cyclohexyl-α-dienyl-*β*-lactam derivatives. These reaction also resulted in the formation of *N*-cyclohexyl-*β*-aminodienoic esters, albeit, in lower yields (60%) by using excess of sodium methoxide. However, the reactions resulted in the conversion of *cis-N*-cyclohexyl-α-dienyl-*β*-lactams to the corresponding *trans-N*-cyclohexyl-α-dienyl-*β*-lactams when equimolar quantities of sodium methoxide were employed.

This is probably due to the abstraction of the $H³$ by one equivalent of base followed by reprotonation to form more stable *trans* isomer, further confirmed from the coupling constant of $J=2.1$ Hz between H^3-H^4 protons of the 2-azetidinone ring (**Scheme 3**)

Scheme 3 Mechanism showing the ring opening of *N-*cyclohexyl-α-dienyl-*β*-lactams

In conclusion, a facile single step base catalyzed route for the synthesis of multicomponent *β*-aminodienoic esters through the ring opening reactions of unactivated *N-*alkyl/aryl-α-dienyl-*β*-lactam derivatives has been devised. Further work for the utilization of the diene moiety in construction of novel heterocyclic compounds containing *β*-amino ester group is in progress.

EXPERIMENTAL

GENERAL REMARKS

Melting points were determined by open capillary using Veego Precision Digital Melting Point apparatus (MP-D) and are uncorrected. IR spectra were recorded on a Shimadzu D-8001 spectrophotometer. ${}^{1}H$ NMR spectra were recorded in deuterochloroform with Bruker AC-E 200 (200 MHz) spectrometers using TMS as internal standard. Chemical shift values are expressed as ppm downfield from TMS and *J* values are in Hz. Splitting patterns are indicated as s: singlet, d: doublet, t: triplet, m: multiplet, q: quartet, br: broad peak and brs: broad singlet. 13C NMR spectra were also recorded on Bruker AC-200E (50.4 MHz) spectrometers in deuterochloroform using TMS as internal standard. Mass spectra were recorded on Shimadzu GCMS-QP-2000 mass spectrometer. Elemental analyses were performed on Heraus CHN-O-Rapid Elemental Analyzer. Column chromatography was performed on a silica gel (60–120) mesh or Harrison Research Chromatotron using 2 mm plates (Silica gel 60 PF254).

GENERAL PROCEDURE:

The synthesis of *β*-aminodienoic esters was realized by addition of sodium methoxide **2** (15mmol) to MeOH (20 mL) solution of *trans*-3-butadienyl-2-azetidinones¹⁰ (10mmol) **1a-j**. After completion of the reaction, (monitored through tlc) reaction mixture was washed with water and extracted with CH_2Cl_2 . The removal of solvent under reduced pressure resulted in crude product, which was purified through silica gel column chromatography resulted in isolation of compound **3a-m** in excellent yields.

2-[(4-Chlorophenylamino)phenylmethyl]hexa-2,4-dienoic acid methyl ester (3a):

Pale yellow solid (92 %), mp 120–121 °C. IR (KBr): $v_{max} = 1689.5, 3392.5 \text{ cm}^{-1}$. ¹H NMR (CDCl₃, 300 MHz): $δ_H = 1.93$ (dd, *J* = 6.9, 1.5 Hz, 3 H, H₇), 3.66 (s, 3H, H₉), 5.07 (d, *J*=9.3 Hz, 1 H, H₁), 5.78 (d, *J* = 9.0 Hz, 1 H, H2), 6.26 (m, 1 H, H6), 6.68 (m, 1 H, H5), 6.72 (m, 1 H, H4), 6.68-7.22 (m, 9 H, aromatic), ¹³C NMR (CDCl₃, 75 MHz): δ_c = 19.1, 51.6, 54.1, 113.5, 117.6, 126.2, 126.3, 126.6, 128.3, 129.2, 141.0, 141.2. 141.5, 147.2, 167.4 ppm. MS m/z 341 [M]⁺. Anal. Calcd for C₂₀H₂₀ClNO₂ (341.1): C 70.27, H 5.90, N 4.10. Found: C 70.41, H 6.00, N 3.97.

2-[(4-Chlorophenyl)phenylaminomethyl]hexa-2,4-dienoic acid methyl ester (3b):

Pale yellow solid (90 %), mp 118–119 °C. IR (KBr): $v_{max} = 1689.6, 3393.4 \text{ cm}^{-1}$. ¹H NMR (CDCl₃, 300 MHz): δ_{H} = 1.92(dd, *J* = 6.8, 1.5 Hz, 3 H, H₇), 3.68 (s, 3 H, H₉), 5.05(d, *J*=9.3 Hz, 1 H, H₁), 5.72 (d, *J* = 9.0 Hz, 1 H, H₂), 6.25(m, 1 H, H₆), 6.68 (m, 1 H, H₅), 6.73 (m, 1 H, H₄), 6.99 (m, 9 H, aromatic), ¹³C NMR (CDCl₃, 75 MHz): δc = 19.2, 51.8, 54.1, 114.7, 117.9, 126.3, 127.0, 128.4, 129.1, 129.4, 141.2, 141.8, 142.0, 147.0, 167.3, MS m/z 341 [M]⁺. Anal. Calcd for C₂₀H₂₀ClNO₂ (341.1): C 70.27, H 5.90, N 4.10. Found: C 70.42, H 6.04, N 4.19.

2-[(4-Methoxyphenyl)phenylaminomethyl]hexa-2,4-dienoic acid methyl ester (3c):

White solid (80 %), mp 132–135 °C. IR (KBr): $v_{max} = 1682.5, 3389.5 \text{ cm}^{-1}$. ¹H NMR (CDCl₃, 300 MHz): δ_{H} = 1.90(dd, *J* = 6.8, 1.4 Hz, 3 H, H₇), 3.63 (s, 3 H, -*OCH₃C₆H₄)*, 3.68 (s, 3 H, H₉) 5.10(d, *J*=9.3 Hz, 1 H, H1), 5.85 (d, *J* = 9.0 Hz, 1 H, H2), 6.28(m, 1 H, H6), 6.70 (m, 1 H, H5), 6.73 (m, 1 H, H4), 6.70-7.48 (m, 9 H, aromatic) ppm. ¹³C NMR (CDCl₃, 75 MHz): δ_c = 19.2, 51.7, 54.5, 56.2, 113.8, 117.9, 126.8, 126.9, 127.2, 129.6, 130.4, 142.2, 142.6. 142.7, 148.2, 167.4, 169.2 ppm. MS *m*/*z* 337 [*M*] + . Anal. Calcd for C₂₁H₂₃NO₃ (337.4): C 74.75, H 6.87, N 4.15, Found: C 74.92, H 7.02, N 3.97.

2-[(4-Methoxyphenylamino)phenylmethyl]hexa-2,4-dienoic acid methyl ester (3d):

White solid (68 %), mp 138–140 °C. IR (KBr): $v_{max} = 1689.5$, 3388.5 cm⁻¹. ¹H NMR (CDCl₃, 300 MHz): δ_{H} = 1.92(dd, *J* = 6.8, 1.4 Hz, 3 H, H₇), 3.62 (s, 3 H, -*OCH*₃C₆H₄), 3.69 (s, 3 H, H₉) 5.08(d, *J*=9.3 Hz, 1 H, H1), 5.78 (d, *J* = 9.0 Hz, 1 H, H2), 6.25(m, 1 H, H6), 6.72 (m, 1 H, H5), 6.76 (m, 1 H, H4), 6.72-7.52 (m, 9 H, aromatic) ppm. ¹³C NMR (CDCl₃, 75 MHz): δ_c = 19.5, 51.8, 54.8, 57.2, 114.2, 118.2, 128.1, 128.2, 128.9, 129.2, 130.6, 142.2, 142.6. 142.8, 148.2, 167.6, 169.6 ppm. MS *m*/*z* 337 [*M*] + . Anal. Calcd for $C_{21}H_{23}NO_3(337.4)$: C 74.75, H 6.87, N 4.15, Found: C 74.92 H 6.98, N 4.28.

2-(Phenylphenylaminomethyl)hexa-2,4-dienoic acid methyl ester (3e):

White solid (72 %), mp 90-91 °C. IR (KBr): $v_{max} = 1681.1$, 3396.4 cm⁻¹. ¹H NMR (CDCl₃, 300 MHz): *δ*H = 1.92(dd, *J* = 6.6, 1.5 Hz, 3 H, H7), 3.66 (s, 3 H, H9) 5.08(d, *J*=9.3 Hz, 1 H, H1), 5.79 (d, *J* = 9.0 Hz, 1 H, H₂), 6.27(m, 1 H, H₆), 6.64 (m, 1 H, H₅), 6.68 (m, 1 H, H₄), 6.64-7.39 (m, 10 H, aromatic) ppm. ¹³C NMR (CDCl₃, 75 MHz): δc = 19.1, 51.7, 54.1, 113.5, 117.6, 126.2, 126.4, 126.9, 128.4, 129.3, 141.1, 141.2. 141.6, 147.2, 168.0 ppm. MS m/z 307 [M]⁺. Anal. Calcd for C₂₀H₂₀NO₂ (307.4): C 78.15, H 6.89, N 4.56. Found: C 78.29, H 7.05, N 4.39.

2-(Phenyl-*p***-tolylaminomethyl)hexa-2,4-dienoic acid methyl ester (3f):**

Pale cream solid (70 %), mp 98-100 °C. IR (KBr): $v_{max} = 1678.1$, 3390.4 cm⁻¹. ¹H NMR (CDCl₃, 300

MHz): δ_{H} = 1.92(dd, *J* = 6.6, 1.5 Hz, 3 H, H₇), 2.42(s, 3 H, -*CH₃C₆H₄)*, 3.67 (s, 3 H, H₉) 5.09(d, *J*=9.3 Hz, 1 H, H1), 5.79 (d, *J* = 9.0 Hz, 1 H, H2), 6.28(m, 1 H, H6), 6.63 (m, 1 H, H5), 6.66 (m, 1 H, H4), 6.63-7.40 (m, 9 H, aromatic) ppm. ¹³C NMR (CDCl₃, 75 MHz): δ_c = 19.1, 21.2, 51.8, 54.0, 113.6, 117.6, 126.1, 126.3, 126.8, 128.3, 129.3, 141.0, 141.2. 141.5, 147.1, 168.0 ppm. MS *m*/*z* 321 [*M*] + . Anal. Calcd for C21H23NO2 (321.4): C 78.47, H 7.21, N 4.36. Found: C 78.60, H 7.35, N 4.21.

2-[(4-Methoxyphenyl)-(4-methoxyphenyamino)methyl]hexa-2,4-dienoic acid methyl ester (3g):

White solid (65 %), mp 135-138 °C. IR (KBr): $v_{max} = 1679.1$, 3388.4 cm⁻¹. ¹H NMR (CDCl₃, 300 MHz): δ_{H} = 1.91(dd, *J* = 6.6, 1.5 Hz, 3 H, H₇), 3.64(s, 3 H, -*OCH₃C*₆H₄N-), 3.65(s, 3 H, -*OCH₃C*₆H₄), 3.72 (s, 3 H, H9) 5.08(d, *J*=9.3 Hz, 1 H, H1), 5.78 (d, *J* = 9.0 Hz, 1 H, H2), 6.29(m, 1 H, H6), 6.66 (m, 1 H, H₅), 6.70 (m, 1 H, H₄), 6.66-7.38 (m, 8 H, H, aromatic) ppm. ¹³C NMR (CDCl₃, 75 MHz): δ_c = 19.1, 21.2, 51.8, 54.0, 56.2, 56.8, 113.6, 117.6, 126.1, 126.3, 126.8, 128.3, 129.3, 141.0, 141.2. 141.5, 147.1, 168.0 ppm. MS m/z 367 [M]⁺. Anal. Calcd for C₂₂H₂₅NO₄ (367.4): C 71.91, H 6.86, N 3.81. Found: C 72.12, H 6.97, N 3.70.

2-[(4-Chlorophenyl)-(4-chlorophenylamino)methyl]hexa-2,4-dienoic acid methyl ester (3h):

Pale yellow solid (82 %), mp 122-124 °C. IR (KBr): $v_{max} = 1690.6, 3392.4 \text{ cm}^{-1}$. ¹H NMR (CDCl₃, 300) MHz): δ_{H} = 1.91(dd, *J* = 6.6, 1.5 Hz, 3 H, H₇), 3.68 (s, 3 H, H₉) 5.06(d, *J*=9.3 Hz, 1 H, H₁), 5.72 (d, *J* = 9.0 Hz, 1 H, H2), 6.26(m, 1 H, H6), 6.64 (m, 1 H, H5), 6.71 (m, 1 H, H4), 6.64-7.38 (m, 8 H, aromatic) ppm. ¹³C NMR (CDCl₃, 75 MHz): δ_c = 19.2, 51.8, 54.1, 114.7, 117.9, 126.3, 127.1, 128.4, 129.2, 129.4, 141.3, 141.8, 142.2, 147.0, 167.3 ppm. MS m/z 375 $[M]^+$. Anal. Calcd for C₂₀H₂₀Cl₂NO₂ (376.3): C 63.84, H 5.09, N 3.72. Found: C 64.02, H 5.24, N 3.66.

2-[(4-Chlorophenyl)-cyclohexylaminomethyl]hexa-2,4-dienoic acid methyl ester (3i):

Pale yellow solid (70 %), mp 102-104 °C. IR (KBr): $v_{max} = 1682.6$, 3388 cm⁻¹. ¹H NMR (CDCl₃, 300 MHz): $δ$ ^H = 1.1-1.97(m, 10 H, cyclohexyl) 1.18(dd, *J* = 6.4, 1.4 Hz, 3 H, H₇), 3.42(m, 1 H. –H(cyclohexyl)) , 3.64 (s, 3 H, H9) 5.08(d, *J*=9.3 Hz, 1 H, H1), 5.68 (d, *J* = 9.0 Hz, 1 H, H2), 6.28(m, 1 H, H_6), 6.69 (m, 1 H, H₅), 6.71 (m, 1 H, H₄), 6.70-7.25 (m, 5 H, aromatic) ppm. ¹³C NMR (CDCl₃, 75 MHz): *δ*C = 16.4, 17.5, 33.8, 44.5, 51.3, 54.5, 56.9, 114.8, 117.9, 126.6, 127.5, 127.8, 128.1, 130.4, 132.5, 132.9, 141.4, 144.2, 147.5, 166.3 ppm. MS m/z 347 $[M]$ ⁺. Anal. Calcd for C₂₀H₂₆ClNO₂ (347.9): C 69.05, H 7.53, N 4.03. Found: C 69.21, H 7.70, N 4.15.

2-[Benzylamino-(4-Chlorophenyl)methyl]hexa-2,4-dienoic acid methyl ester (3j):

Pale yellow solid (66 %), mp 108-110 °C. IR (KBr): $v_{max} = 1692.6, 3390.4 \text{ cm}^{-1}$. ¹H NMR (CDCl₃, 300 MHz): δ_{H} = 1.82(dd, *J* = 6.4, 1.4 Hz, 3 H, H₇), 3.64 (s, 3 H, H₉), 3.92(s, 2 H. –CH₂(benzyl)), 5.09(d, *J*=9.3 Hz, 1H, H₁), 5.66 (d, *J* = 9.0 Hz, 1 H, H₂), 6.26(m, 1 H, H₆), 6.68 (m, 1H, H₅), 6.72 (m, 1H, H₄), 6.68-7.25 (m, 9 H, aromatic) ppm. ¹³C NMR (CDCl₃, 75 MHz): δ_c = 19.2, 51.8, 52.6, 54.1, 114.7, 117.9, 126.4, 128.1, 129.0, 129.2, 129.5, 141.4, 141.9, 142.8, 147.2, 167.6 ppm. MS *m*/*z* 356 [*M*] + . Anal. Calcd for C21H22ClNO2 (355.9): C 70.88, H 6.23, N 3.94. Found: C 71.04, H 6.42, N 3.82.

2-[(4-Chlorophenylamino)phenylmethyl]hepta-2,4-dienoic acid ethyl ester (3k):

Pale Yellow solid (78 %), mp 110-112 °C. IR (KBr): $v_{max} = 1689.5, 3392.5 \text{ cm}^{-1}$. ¹H NMR (CDCl₃, 300 MHz): δ_{H} = 1.06(t, 3 H, -CH₃-CH₂), 1.98(m, 2 H, H₇), 3.65 (s, 3 H, H₉), 5.08 (d, *J*=9.3 Hz, 1 H, H₁), 5.76 (d, *J* = 9.0 Hz, 1 H, H2), 6.24(m, 1 H, H6), 6.64 (m, 1 H, H5), 6.69 (m, 1 H, H4),6.64-7.40 (m, 9 H, aromatic) ppm. ¹³C NMR (CDCl₃, 75 MHz): $\delta_c = 14.2$, 20.2, 51.6, 54.1, 113.5, 117.6, 126.2, 126.3, 126.6, 128.3, 129.2, 141.0, 141.2. 141.5, 147.2, 167.4 ppm. MS m/z 355 [M]⁺. Anal. Calcd for C₂₁H₂₂ClNO₂ (355.1): C 70.88, H 6.23, N 3.94. Found: C 70.97, H 6.38, N 3.85.

2-[(4-Methoxyphenylamino)phenylmethyl]hepta-2,4-dienoic acid ethyl ester (3l):

White solid (62 %), mp 142-145 °C. IR (KBr): $v_{max} = 1689.5$, 3388.5 cm⁻¹. ¹H NMR (CDCl₃, 300 MHz): $\delta_{\text{H}} = 1.08$ (t, 3 H, -CH₃-CH₂), 1.97(m, 2 H, H₇), 3.63 (s, 3H, -*OCH*₃C₆H₄), 3.69 (s, 3 H, H₉), 5.09(d, *J*=9.3 Hz, 1 H, H1), 5.76 (d, *J* = 9.0 Hz, 1 H, H2), 6.26(m, 1 H, H6), 6.72 (m, 1 H, H5), 6.78 (m, 1 H, H4), 6.72-7.52 (m, 9 H, aromatic) ppm. ¹³C NMR (CDCl₃, 75 MHz): δ_c = 14.4, 20.2, 51.8, 54.8, 57.2, 114.2, 118.2, 128.1, 128.2, 128.9, 129.2, 130.6, 142.2, 142.6. 142.8, 148.2, 167.6, 169.6 ppm. MS *m*/*z* 351 [*M*]⁺. Anal. Calcd for C₂₂H₂₅NO₃ (351.4): C 75.19, H 7.17, N 3.99. Found: C 75.32, H 7.29, N 3.81.

2-(Phenyl-phenylaminomethyl)hepta-2,4-dienoic acid ethyl ester (3m):

White solid (66 %), mp 96-97 °C. IR (KBr): $v_{max} = 1681.1$, 3396.4 cm⁻¹. ¹H NMR (CDCl₃, 300 MHz): $\delta_{\rm H} =$ 1.10(t, 3 H, -CH3-CH2), 1.99(m, 2 H, H7), 3.64 (s, 3 H, H9), 5.08(d, *J*=9.3 Hz, 1 H, H1), 5.80 (d, *J* = 9.0 Hz, 1 H, H₂), 6.26(m, 1 H, H₆), 6.69 (m, 1 H, H₅), 6.69 (m, 1 H, H₄), 6.63-7.39 (m, 10 H, aromatic) ppm. ¹³C NMR (CDCl₃, 75 MHz): δ_C = 14.6, 20.2, 51.7, 54.1, 113.5, 117.6, 126.2, 126.4, 126.9, 128.4, 129.3, 141.1, 141.2. 141.6, 147.2, 168.0 ppm. MS m/z 321 [M]⁺. Anal. Calcd for C₂₁H₂₃NO₂ (321.4): C 78.47, H 7.21, N 4.36. Found: C 78.62, H 7.35, N 4.18.

REFERENCES

- 1. For a discussion of the synthesis and biology of *β*-amino acids see: *In Enantioselective Synthesis of β-Amino Acids*., ed. by E. Juaristi, Wiley–VCH: New York, 1997.
- 2. (a) S. Shinagawa, T. Kanamaru, S. Harada, M. Asai, and H. Okazaki, *J. Med. Chem*., 1987, **30**, 1458. (b) T. Kanamaru, S. Shinagawa, M. Asai, H. Okazaki, Y. Sugiyama, T. Fujita, H. Iwatsuka, and M.

Yoneda, *Life Sci*., 1985, **37**, 217.

- 3. *Enantioselective Synthesis of β -Amino Acids*., ed. by E. Juaristi, Wiley–VCH: New York, 1997; Chapter 1.
- 4. M. Namikoshi, K. L. Rinehart, A. M. Dahlem, V. R. Beasley, and W. W. Carmichael, *Tetrahedron Lett*., 1989, **30**, 4349 and references cited therein.
- 5. (a) F. von Nussbaum, P. Spiteller, M. Ruth, W. Steglich, and G. Wanner, *Angew. Chem., Int. Ed*., 1998, **37**, 3292. (b) P. Spiteller, M. Rüth, F. von Nussbaum, and W. Steglich, *Angew. Chem. Int. Ed*., 2000, **39**, 2754.
- 6. P. Crews, L. V. Manes, and M. Boehler, *Tetrahedron Lett*., 1986, **27**, 2797 and references cited therein.
- 7. C. Shih, L. S. Gossett, J. M. Gruber, C. S. Grossman, S. L. Andis, R. M. Schultz, J. F. Worzalla, T. H. Corbett, and J. T. Metz, *Bio*. *Med. Chem. Lett*., 1999, **9**, 69.
- 8. R. Roers and G. L. Verdine, *Tetrahedron Lett*., 2001, **42**, 3563 and references cited therein.
- 9. (a) S. Abele and D. Seebach, *Eur. J. Org. Chem.,* 2000, 1. (b) E. Juaristi and H. López-Ruiz, *Curr. Med. Chem*., 1999, **6**, 983. (c) A. F. Abdel-Magid, J. H. Cohen, T. Maryanoff, T. Kametani, and T. Honda, '*Advances in Heterocyclic Chemistry: Application of Aziridines to the Synthesis of Natural Products*,' Vol. **39**, ed. by A. R. Katritzky, Academic Press, Inc., London, 1986, pp. 181-236.
- 10. (a) T. Muraoka, S. Kamiya, I. Matsuda, and K. Itoh, *Chem. Commum.*, 2002, 1284. (b) T. Ollevier and E. Nadeau, *Synlett*, 2006, **2**, 219.
- 11. I. Ojima, *Acc. Chem. Res.,* 1995, **28**, 383.
- 12. A. K. Sharma, R. S. Kumar, and M. P. Mahajan, *Heterocyles*, 2000, **52**, 603.
- 13. G. Bhargava, M. P. Mahajan, T. Saito, T. Otani, M. Kurashima, and K. Sakai, *Eur. J. Org. Chem.,* 2005, 2397.
- 14. (a) M. Oiarbide, I. Ganboa, J. M. Aizpurua, and C. Polomo, *Curr. Med. Chem.*, 2004, **11**, 1837. (b) A. R. A. S. Deshmukh, B. M. Bhawal, D. Krishnaswamy, V. V. Govande, A. B. Shinkre, and A. Jayanthi, *Curr. Med. Chem.*, 2004, **11**, 1889.
- 15. The starting materials α-dienyl-*β*-lactams are *trans* with *N*-aryl substituents and *cis* with *N*-alkyl substituents.
- 16.L. D. Vitis, L. Troisi, C. Granito, E. Pindinelli, and L. Ronzini, *Eur. J. Org. Chem.,* **2007**, 356.
- 17.X-Ray crystal data and structure refinement for **3a.** CCDC-634260 (for **3a)** contains the supplementary crystallographic data for this paper. C₂₀H₂₀ClNO₂, *M* = 341.82, triclinic, space group *P*-1, a = 8.380(5), b = 10.941(5), c = 11.215(5) Å, α $= 111.360(5)^\circ$, $\beta = 103.700(5)^\circ$, $\gamma = 90.840(5)^\circ$, $V = 924.6(8)$ \AA^3 , $Z = 2$, *D* calcd. = 1.228 Mg/m³, $\mu(Abs. Coeff.) = 0.217$ mm⁻¹, $T = 298(2)$ K, $\lambda = 0.71073$ Å, Final R indices $[I_2.0\sigma(I)]$ $R1 = .0602$,

*wR*2 = 0.1548, R indices (all data) [*I* _ 2.0*σ*(*I*)] R1 = 0.1037, wR2 = 0.1904 (3412 collections), GOF = 1.068 (311 parameters). Diffraction data were measured on a Bruker APEX CCD-Detector X-ray diffractometer. Structure solution, refinements were carried out with Shelx-97.