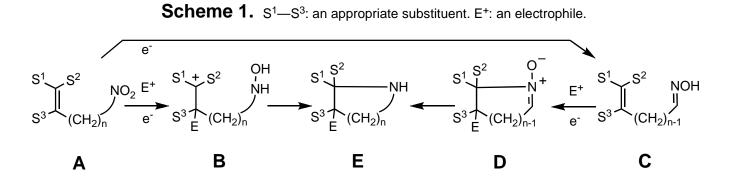
HETEROCYCLES, Vol. 74, 2007, pp. 943 - 950. © The Japan Institute of Heterocyclic Chemistry Received, 9th July, 2007, Accepted, 27th August, 2007, Published online, 28th August, 2007. COM-07-S(W)14

A NOVEL REDUCTIVE AMINO-CYCLIZATION METHOD AND ITS APPLICATION FOR THE TOTAL SYNTHESES OF (±)-AURANTIO-CLAVINE AND (±)-LOPHOCERINE^{1a#}

Masanori Somei^{*,1b} and Fumio Yamada

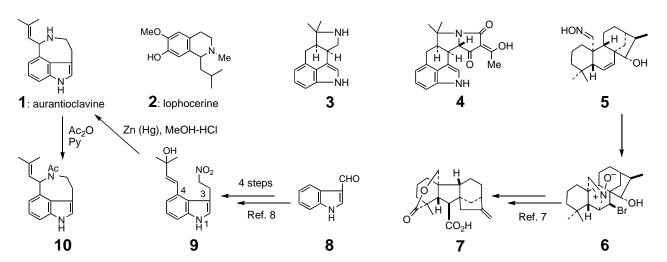
Division of Pharmaceutical Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan. Corresponding author: e-mail address: syamoji_usa@r9.dion.ne.jp


Abstract – A novel reductive amino-cyclization method for the synthesis of azacycloalkanes is developed. Its versatility is proved by the total syntheses of (\pm) -aurantioclavine (1), an ergot alkaloid, and (\pm) -lophocerine (2), a cactus alkaloid, as examples of azepane and piperidine skeletons, respectively.

In our project for developing biologically active compounds,² we needed a novel simple method for constructing azacycloalkanes under acidic conditions. Generally speaking, however, the formation of a C—N bond between nitrogen atom of amines and carbocation generated *in situ* by the action of an acid is impossible, because the basic nitrogen is protonated completely and eventually loses the nucleophilic ability.

To overcome the problem we have conceived the following idea as shown in general formula in Scheme 1. If the type **A** compound, having both nitro and unsaturated groups in a molecule, is subjected to an acidic reduction (in this case, $E^+ = H^+$), the nitrogen atoms of both the resulting intermediates, hydroxylamine (**B**) or oxime (**C**), would not be protonated completely due to the attached electron-attracting oxygen atom. So, in cases where a carbocation is generated in the neighborhood of the nitrogen atom, both carbon and nitrogen atoms can connect together resulting in the formation of a cyclic hydroxylamine or a cyclic nitrone (**D**). Simultaneous acidic reduction can provide the desired type **E** azacycloalkanes.

On the basis of the above idea, we have succeeded in creating a novel reductive amino-cyclization method.³ We wish to report its application for the total syntheses of (\pm) -aurantioclavine⁴ (1), a member of ergot alkaloid and (\pm) -lophocerine (2), a cactus alkaloid, as examples of azepane and a piperidine formations, respectively (Scheme 2). Part of these works is reported as preliminary communications.^{3,6}

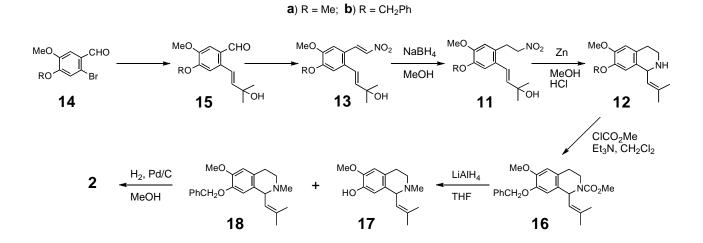

As for an example of pyrrolidine formation, we had already applied the method for the synthesis of 6,6a,7,8,9,9a-hexahydro-2*H*-isoindolo[4,5,6-cd]indole^{3,6} (**3**), a synthetic intermediate for α -cyclopiazonic acid (**4**). We had demonstrated as well that the process, $\mathbf{C} \rightarrow \mathbf{D}$ in Scheme 1, actually worked.⁷ Thus, the compound (**5**) was successfully converted to a nitrone (**6**, in this case, $\mathbf{E}^+ = \mathbf{Br}^+$), an important intermediate for the synthesis of gibberellin A₁₅ (**7**).⁷

An Efficient Total Synthesis of (±)-Aurantioclavine (1)

According to our synthetic procedures,^{6,8} we first prepared (*E*)-2-methyl-4-[3-(2-nitroethyl)indol-4-yl]-3-buten-2-ol (**9**, Scheme 2), our common synthetic intermediate for the ergot alkaloids,² in 46% overall yield from indole-3-carbaldehyde (**8**) in four steps.⁸ Since the compound (**9**) contains the type **A** structure, the desired allyl cation being a benzyl cation as well, can be generated on the side chain at the 4-position of **9** by an acid treatment. The carbocation is so stable that it would survive during the time when the acidic reduction of the nitro group on the side chain at the 3-position of **9** proceeds, and it would eventually have a chance to form a bond to the hydroxylamine nitrogen.

Scheme 2

In fact, however, treatment of **9** with such reagent systems as $SnCl_2/HCl/MeOH$, $TiCl_3/MeOH$, Fe/AcOH, and Zn/AcOH ended in failure under various examined reaction conditions. Finally, we tried amalgamated zinc (Zn (Hg)) and found it a reagent of choice. Thus, treatment of **9** with Zn (Hg) in refluxing methanolic HCl gave (±)-aurantioclavine (**1**) in 72% yield. Further treatment of **1** with Ac₂O and pyridine afforded (±)-*N*-acetylaurantioclavine (**10**) in 93% yield. Spectral data of **1** were identical with those of aurantioclavine, reported in the literature.⁴


Thus, we accomplished the first total synthesis of (\pm) -aurantioclavine (1) in the simplest five steps with a 33% overall yield from 8 without using any protective groups. Hegedus' group⁹ achieved the total syntheses of (\pm) -1 afterwards, too.¹⁰

Total Synthesis of (±)-Lophocerine (2)

In order to examine whether our amino-cyclization method works for the piperidine formation, we selected (\pm) -lophocerine $(2)^5$ as a target molecule, which is known to exist as a racemate.⁵

For the synthesis of intermediates having 1-substituted isoquinoline skeletons (**12a**,**b**, Scheme 3), we chose 4-[4,5-dimethoxy- (**11a**) and 4-[5-benzyloxy-4-methoxy-2-(2-nitroethyl)phenyl]-2-methyl-3-buten-2-ol¹¹ (**11b**) as suitable substrates because they have the type **A** structure (Scheme 1) in the molecules.

Scheme 3

Employing the reduction with NaBH₄ in MeOH, compounds $(11a,b^{11})$ were easily prepared in 74 and 81% yields, respectively, from 13a and 13b.¹¹ They were prepared according to our procedures¹¹ from 6-bromoveratraldehyde (14a) and 6-bromo-4-benzyloxy-3-methoxybenzaldehyde (14b) in two steps through 15a and 15b.

The reductive amino-cyclization method, using zinc instead of Zn (Hg), was successfully applied for **11a** and **11b**. Thus, treatment of **11a** and **11b** with zinc in refluxing methanolic HCl provided 6,7-dimethoxy-

(**12a**) and 7-benzyloxy1-6-methoxy-1-(2-methyl-1-propen-1-yl)-1,2,3,4-tetrahydroisoquinoline (**12b**) in 67 and 77% yields, respectively.

Further treatment of **12b** with ClCO₂Me and Et₃N afforded 7-benzyloxy-6-methoxy-2-methoxycarbonyl-1-(2-methyl-1-propen-1-yl)-1,2,3,4-tetrahydroisoquinoline (**16**) in 99% yield. Subsequent reduction of **16** with LiAlH₄ in dry THF gave 7-benzyloxy-1-(2-methyl-1-propen-1-yl)-6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinoline (**17**) in 86% yield together with an 11% yield of the debenzylated compound **18**. Catalytic hydrogenation of the double bond and debenzylation of **17** over 10% Pd/C in MeOH produced (\pm)-lophocerine (**2**) in 39% yield. Our synthesized **2** and its picrate were identical with the samples prepared according to the procedure described in the literature.⁵

In conclusion, we have established a novel reductive amino-cyclization method for the synthesis of azacycloalkanes based on our idea shown in Scheme 1. Its versatility was proved by the total syntheses of (\pm) -aurantioclavine (1) and (\pm) -lophocerine (2) as examples of the azepane and piperidine skeletons, respectively.

EXPERIMENTAL

Melting points were determined on a Yanagimoto micro melting point apparatus and are uncorrected. IR spectra were determined with a Shimadzu IR-420 spectrophotometer, and ¹H-NMR spectra with a JEOL JNM-PMX 60 or a JEOL FX-100 spectrometer, with tetramethylsilane as an internal standard. MS were recorded on a Hitachi M-80 spectrometer. Preparative thin-layer chromatography (p-TLC) was performed on Merck Kiesel-gel GF₂₄₅ (Type 60) (SiO₂). Column chromatography was performed on silica gel (SiO₂, 100—200 mesh, from Kanto Chemical Co., Inc.) throughout the present study.

(±)-Aurantioclavine (1) from (*E*)-2-Methyl-4-[3-(2-nitroethyl)indol-4-yl]-3-buten-2-ol (9) — A solution of 9 (113.2 mg, 0.41 mmol) in MeOH (24 mL) and 3% HCl (8 mL) was added to Zn (Hg), prepared from Zn powder (1.386 g, 21.2 mmol) and HgCl₂ (229.0 mg, 0.84 mmol) in 3% HCl (8 mL), and the mixture was refluxed for 3.5 h with stirring. Unreacted Zn (Hg) was filtered off and the filtrate was evaporated under reduced pressure. The residue was made basic by adding 8% NaOH and the whole was extracted with CH₂Cl₂–MeOH (95:5, v/v). The organic layer was washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure to leave an oil, which was subjected to p-TLC on SiO₂ with CHCl₃–MeOH–28% aq. NH₃ (46:5:0.5, v/v) as a developing solvent. Extraction of the band having an *Rf* value of 0.29—0.58 with CHCl₃–MeOH-28% aq. NH₃ (46:5:0.5, v/v) gave 1 (66.9 mg, 72%). 1: mp 194—196 °C (colorless leaves, recrystallized from CH₂Cl₂–hexane). IR (KBr): 3290, 2915 cm⁻¹. ¹H-NMR (CDCl₃) δ : 1.71 (1H, br s, disappeared on addition of D₂O), 1.84 (6H, s), 2.83—3.24 (3H, m), 3.33—3.71 (1H, m), 4.86 (1H, d, *J*=9.0 Hz), 5.44 (1H, br d, *J*=9.0 Hz), 6.80 (1H, br d, *J*=6.8 Hz), 6.89—7.27 (2H, m), 6.94 (1H, br s), 8.17 (1H, br s, disappeared on addition of D₂O). MS *m/z*: 226 (M⁺).

Anal. Calcd for C₁₅H₁₈N₂: C, 79.60; H, 8.02; N, 12.38. Found: C, 79.52; H, 8.10; N, 12.53.

(±)-*N*-Acetylaurantioclavine (10) from 1 — Ac₂O (1 mL) was added to a solution of 1 (53.1 mg, 0.24 mmol) in pyridine (2 mL) and the mixture was stirred at rt for 13 h. After evaporation of the solvent, saturated aqueous NaHCO₃ was added and the whole was extracted with CH₂Cl₂–MeOH (95:5, v/v). The organic layer was washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure to leave a solid, which was recrystallized from MeOH to give 10 (58.5 mg, 93%) as colorless needles. 10: mp 235—236 °C. IR (KBr): 3200, 1664, 1593 cm⁻¹. ¹H-NMR (10% CD₃OD in CDCl₃) δ : 1.70 (3H, s), 1.80 (3H, s), 2.18 (3H, s), 2.64—4.54 (4H, m), 5.72 (1H, br d, *J*=7.5 Hz), 5.80 (1H, br d, *J*=7.5 Hz), 6.57—7.28 (4H, m). MS *m/z*: 268 (M⁺). *Anal*. Calcd for C₁₇H₂₀N₂O: C, 76.08; H, 7.51; N, 10.44. Found: C, 75.90; H, 7.59; N, 10.22.

(*E*)-4-[4,5-Dimethoxy-2-(2-nitroethyl)phenyl]-2-methyl-3-buten-2-ol (11a) from (*E*,*E*)-4-[4,5-Dimethoxy-2-(2-nitrovinyl)phenyl]-2-methyl-3-buten-2-ol (13a) — NaBH₄ (1.045g, 27.5 mmol) was added to a solution of 13a (2.009g, 6.86 mmol) in MeOH (120 mL) and the mixture was stirred at rt for 30 min. Brine was added and the mixture was adjusted to pH 8 by adding 6% HCl. The whole was extracted with CH₂Cl₂–MeOH (95:5, v/v). The organic layer was washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO₂ with Et₂O–hexane (3:1, v/v) to give 11a (1.245 g, 62%). 11a: mp 99—100 °C (colorless prisms, recrystallized from CH₂Cl₂–hexane). IR (KBr): 3460, 1602, 1538, 1503, 1343, 1261 cm⁻¹. ¹H-NMR (CDCl₃) δ : 1.42 (6H, s), 1.83 (1H, br s, disappeared on addition of D₂O), 3.27 (2H, t, *J*=7.2 Hz), 3.78 (3H, s), 3.81 (3H, s), 4.43 (2H, t, *J*=7.2 Hz), 6.03 (1H, d, *J*=15.6 Hz), 6.52 (1H, s), 6.64 (1H, d, *J*=15.6 Hz), 6.82 (1H, s). MS *m/z*: 295 (M⁺). *Anal.* Calcd for C₁₅H₂₁NO₅·1/10H₂O: C, 60.63; H, 7.19; N, 4.71. Found: C, 60.61; H, 7.27; N, 4.79.

6,7-Dimethoxy-1-(2-methyl-1-propen-1-yl)-1,2,3,4-tetrahydroisoquinoline (12a) from 11a — A solution of 11a (50.9 mg, 0.17 mmol) in MeOH (6 mL) was added to a mixture of Zn powder in 6% HCl (2 mL), and the mixture was refluxed for 3 h with stirring. Unreacted Zn was filtered off and the filtrate was evaporated under reduced pressure. The residue was made basic by adding 8% NaOH and the whole was extracted with CH₂Cl₂–MeOH (95:5, v/v). The organic layer was washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO₂ with CHCl₃–MeOH–28% aq. NH₃ (46:5:0.5, v/v) to give 12a (28.7 mg, 67%). 12a: mp 57–58 °C (colorless needles, recrystallized from petroleum ether). IR (KBr): 3400, 2910, 2760, 1605, 1509, 1259 cm⁻¹. ¹H-NMR (CDCl₃) δ : 1.80 (3H, d, *J*=1.2 Hz), 1.84 (3H, d, *J*=1.2 Hz), 2.04 (1H, br s, disappeared on addition of D₂O), 2.44–3.40 (4H, m), 3.80 (3H, s), 3.84 (3H, s), 4.65 (1H, d, *J*=9.3 Hz), 5.28 (1H, br d, *J*=9.3 Hz), 6.51 (1H, s), 6.57 (1H, s). MS *m/z*: 247 (M⁺). *Anal*. Calcd for C₁₅H₂₁NO₂: C, 72.84; H, 8.56; N, 5.66. Found: C, 72.62; H, 8.66; N, 5.59.

7-Benzyloxy-6-methoxy-1-(2-methyl-1-propen-1-yl)-1,2,3,4-tetrahydroisoquinoline (12b) from 11b — A solution of **11b** (36.2 mg, 0.09 mmol) in MeOH (6 mL) was added to a mixture of Zn powder (332.1 mg, 5.08 mmol) in 6% HCl (2 mL) and the mixture was refluxed for 4 h with stirring. Unreacted Zn was filtered off and the filtrate was evaporated under reduced pressure. The residue was made basic by adding 20% NaOH and the whole was extracted with CH₂Cl₂–MeOH (95:5, v/v). The organic layer was washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure to leave an oil, which was subjected to p-TLC on SiO₂ with CHCl₃–MeOH–28% aq. NH₃ (46:5:0.5, v/v) as a developing solvent. Extraction of the band having an *Rf* value of 0.49—0.72 with CHCl₃–MeOH–28% aq. NH₃ (46:5:0.5, v/v) gave **12b** (24.2 mg, 77%). **12b**: mp 114—116 °C (colorless prisms, recrystallized from MeOH–H₂O). IR (KBr): 3230, 2900, 1604, 1502, 1359, 1258, 1245, 1215 cm⁻¹. ¹H-NMR (CDCl₃) δ : 1.71 (6H, d, *J*=2 Hz), 1.89 (1H, br s, disappeared on addition of D₂O), 2.46—2.89 (2H, m), 2.89—3.33 (2H, m), 3.77 (3H, s), 4.46 (1H, d, *J*=9 Hz), 4.97 (2H, s), 5.07 (1H, br d, *J*=9 Hz), 6.36 (1H, s), 6.44 (1H, s), 7.02—7.45 (5H, m). MS *m/z*: 323 (M⁺). *Anal.* Calcd for C₂₁H₂₅NO₂: C, 77.98; H, 7.79; N, 4.33. Found: C, 77.69; H, 7.83; N, 4.20.

7-Benzyloxy-6-methoxy-2-methoxycarbonyl-1-(2-methyl-1-propen-1-yl)-1,2,3,4-tetrahydroisoquinoline (16) from 12b — A solution of ClCO₂Me (45.4 mg, 0.48 mmol) in CH₂Cl₂ (1 mL) and Et₃N (0.2 mL) were added to a solution of **12b** (82.4 mg, 0.26 mmol) in CH₂Cl₂ (4 mL) and the mixture was stirred at rt for 3 h. Saturated aqueous NaHCO₃ was added and the whole was extracted with CH₂Cl₂–MeOH (95:5, v/v). The organic layer was washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure to leave an oil, which was subjected to p-TLC on SiO₂ with CH₂Cl₂–MeOH (99:1, v/v) as a developing solvent. Extraction of the band having an *Rf* value of 0.34—0.68 with CH₂Cl₂–MeOH (95:5, v/v) gave **16** (96.6 mg, 99%). **16**: Colorless oil. IR (film): 1697, 1608 cm⁻¹. ¹H-NMR (CDCl₃) δ : 1.67 (3H, d, *J*=1.2 Hz), 1.83 (3H, d, *J*=1.2 Hz), 2.21—4.37 (4H, m), 3.61 (3H, s), 3.73 (3H, s), 4.91 (2H, s), 5.08 (1H, br d, *J*=9.5 Hz), 5.49 (1H, d, *J*=9.5 Hz), 6.31 (1H, s), 6.39 (1H, s), 7.01—7.42 (5H, m). High-resolution MS *m/z*: Calcd for C₂₃H₂₇NO₄: 381.1938. Found: 381.1956.

7-Benzyloxy- (17) and 7-Hydroxy-6-Methoxy-2-methyl-1-(2-methyl-1-propen-1-yl)-1,2,3,4tetrahydroisoquinoline (18) from 16 — LiAlH₄ (109.2 mg, 0.29 mmol) was added to a solution of 16 (96.6 mg, 0.25 mmol) in anhydrous THF (6 mL) and the mixture was refluxed for 24 h. After the addition of MeOH and saturated aqueous Rochelle salt under ice cooling, the whole was extracted with CH₂Cl₂–MeOH (95:5, v/v). The organic layer was washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure to leave an oil, which was subjected to p-TLC on SiO₂ with CHCl₃–MeOH–28% aq. NH₃ (46:5:0.5, v/v) as a developing solvent. Extraction of the band having an *Rf* value of 0.37–0.69 with CHCl₃–MeOH–28% aq. NH₃ (46:5:0.5, v/v) gave **17** (73.8 mg, 86%). **17**: Colorless oil. IR (film): 2930, 2780, 1610, 1507, 1252 cm⁻¹. ¹H-NMR (CDCl₃) δ : 1.67 (3H, d, *J*=1.2 Hz), 1.85 (3H, d, *J*=1.5 Hz), 2.15—3.28 (4H, m), 2.28 (3H, s), 3.72 (1H, d, J=9.5 Hz), 3.77 (3H, s), 4.93 (1H, d, J=9.5 Hz), 4.98 (2H, s), 6.35 (1H, s), 6.46 (1H, s), 7.02—7.38 (5H, m). High-resolution MS *m/z*: Calcd for C₂₂H₂₇NO₂: 337.2040. Found: 337.2038. Extraction of the band having an *Rf* value of 0.20—0.29 with CHCl₃–MeOH–28% aq. NH₃ (46:5:0.5, v/v) gave **18** (6.7 mg, 11%). **18**: mp 159—160 °C (colorless prisms, recrystallized from MeOH–H₂O). IR (KBr): 2900, 1589, 1501, 1268 cm⁻¹. ¹H-NMR (CDCl₃) δ : 1.77 (6H, d, *J*=1.2 Hz), 2.17—3.17 (4H, m), 2.32 (3H, s), 3.74 (3H, s), 3.83 (1H, d, *J*=9.6 Hz), 4.77 (1H, br s, disappeared on addition of D₂O), 5.05 (1H, br d, *J*=9.6 Hz), 6.42 (2H, s). MS *m/z*: 247 (M⁺). High-resolution MS *m/z*: Calcd for C₁₅H₂₁NO₂: 247.1573. Found: 247.1569.

(±)-Lophocerine (2) from 17 — A solution of 17 (30.9 mg, 0.09 mmol) in MeOH (7 mL) was hydrogenated in the presence of 10% Pd/C (33.7 mg) at rt and 1 atm for 7 h. Catalyst was filtered off and the filtrate was evaporated under reduced pressure to leave an oil, which was purified by p-TLC with CHCl₃–MeOH–28% aq. NH₃ (46:5:0.5, v/v) as a developing solvent. Extraction of the band having an *Rf* value of 0.37—0.50 with CHCl₃–MeOH–28% aq. NH₃ (46:5:0.5, v/v) gave 2 (8.8 mg, 39%). 2: Colorless oil. IR (film): 2940, 1592, 1505, 1461, 1360, 1266, 1210, 1130, 1102, 1021, 869, 775 cm⁻¹. ¹H-NMR (CDCl₃) δ : 0.90 (3H, d, *J*=6 Hz), 0.95 (3H, d, *J*=6 Hz), 1.22—2.02 (3H, m), 2.17—3.57 (5H, m), 2.40 (3H, s), 3.80 (3H, s), 4.33 (1H, br s, disappeared on addition of D₂O), 6.43 (1H, s), 6.50 (1H, s). MS *m/z*: 249 (M⁺). 2 picrate: mp 194—196 °C (lit.,⁵ mp 191.5—193 °C, yellow prisms, recrystallized from benzene). IR (KBr): 3370, 2950, 1609, 1507, 1309, 1269 cm⁻¹.

REFERENCES AND NOTES

- a) This report is part 132 of a series entitled "The Chemistry of Indoles". Part 131: M. Somei, S. Sayama, K. Naka, K. Shinmoto, and F. Yamada, *Heterocycles*, submitted. COM-07-S(U)31. b) Professor Emeritus of Kanazawa University. Present address: 2-40-3 Sodani, Hakusan-shi, Ishikawa, Japan 920-2101.
- M. Somei, Y. Yokoyama, Y. Murakami, I. Ninomiya, T. Kiguchi, and T. Naito, The Alkaloids, Vol. 54, ed. by G. A. Cordell, Academic Press, 2000, pp. 191—257, references cited therein; M. Somei, K. Yamada, M. Hasegawa, M. Tabata, Y. Nagahama, H. Morikawa, and F. Yamada, *Heterocycles*, 1996, 43, 1855; Somei, H. Hayashi, T. Izumi, and S. Ohmoto, *ibid.*, 1995, 41, 2161; M. Somei, Y. Fukui, and M. Hasegawa, *ibid.*, 1995, 41, 2157; K. Nakagawa and M. Somei, *ibid.*, 1991, 32, 873.
- 3. F. Yamada, T. Hasegawa, M. Wakita, M. Sugiyama, and M. Somei, *Heterocycles*, 1986, 24, 1223.
- V. G. Sakharovskii, A. V. Aripovskii, M. B. Baru, and A. G. Kozlovskii, *Khim. Prir. Soedin.*, 1983, 656; A. G. Kozlovskii, T. F. Solovera, V. G. Sakharovskii, and V. M. Adanin, *Dolk. Akad. Nauk. SSSR*, 1981, 260, 230.
- 5. J. M. Bobbitt and T.-T. Chou, J. Org. Chem., 1959, 24, 1106; C. Djerassi, T. Nakano, and J. M.

Bobbitt, Tetrahedron, 1958, 2, 58.

- 6. F. Yamada, Y. Makita, T. Suzuki, and M. Somei, *Chem. Pharm. Bull.*, 1985, 33, 2162.
- M. Somei and T. Okamoto, Yakugaku Zasshi, 1972, 92, 397; M. Somei and T. Okamoto, Chem. Pharm. Bull., 1970, 18, 2135.
- 8. F. Yamada, Y. Makita, and M. Somei, *Heterocycles*, 2007, 72, 599.
- 9. L. S. Hegedus, J. L. Toro, W. H. Miles, and P. J. Harrington, J. Org. Chem., 1987, 52, 3319.
- 10. M. Iwao and O. Motoi, Tetrahedron Lett., 1995, 36, 5929.
- 11. M. Somei, F. Yamada, Y. Yamazaki, and A. Shinkura, Chem. Pharm. Bull., 1996, 44, 21.