HETEROCYCLES, Vol. 74, 2007, pp. 961 - 968. © The Japan Institute of Heterocyclic Chemistry Received, 7th August, 2007, Accepted, 23rd October, 2007, Published online, 26th October, 2007. COM-07-S(W)26

ONE-POT SYNTHESIS OF DIBENZOFURAN-1,4-DIONES

Tetsuya Takeya,* Hiromu Kondo, Kazuho Tomita, Iwao Okamoto, Nobuyoshi Morita, and Osamu Tamura*

Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen, Machida, Tokyo 194-8543, Japan. E-mail: tamura@ac.shoyaku.ac.jp

Dedicated to Professor Dr. Ekkehard Winterfeldt on the occasion of his 75^{th} birthday

Abstract – One-pot synthesis of dibenzofuran-1,4-diones **8** from 4-methoxyphenols (or 4-methoxy-1-naphthols) **4** was achieved by oxidative dimerization over a semiconductor in heated, O_2 -saturated toluene, followed by selective monodemethylation, and oxidative cyclization.

INTRODUCTION

The dibenzofuran-1,4-dione core **1** is frequently found in natural products, such as popolohuanone E (**2**) and violet-quinone (**3**) (Figure 1),¹⁻⁴ and several methods have been reported for efficient construction of this structure.⁵⁻⁸ In this context, we recently disclosed an efficient synthetic method of dibenzofuran-1,4-diones **8** having an oxygen functionality at C8, featuring a three-step sequence of oxidative dimerization of hydroquinone monomethyl ethers **4** leading to 2,2'-biarenyl-1,1'-quinones **6** via the 2,2'-biarenols **5**, followed by mono-demethylation of **6**, and oxidative cyclization of the quinone-arenols **7** (Scheme 1).⁹

If the three-step sequence could be conducted in one pot, it would be very convenient for synthesizing a range of compounds **8** for studies on structure-activity relationships. We therefore sought appropriate oxidative conditions, and found that one-pot synthesis of several dibenzofuran-1,4-diones **8** from **4** could be achieved by employing a semiconductor and molecular oxygen.

Scheme 1

RESULTS AND DISCUSSION

We recently reported that semiconductors, such as activated carbon, ZrO_2 , Nb_2O_5 , TiO_2 , SnO_2 , and Ag_2O_5 , could be used for dimerization of 1-naphthols **4**, leading to the dimers **5** or **6**, and that SnO_2 effected mono-demethylation of **6**.¹⁰ We initiated our investigation by examining the reaction of the naphthol **4a** with SnO_2 in the presence of various oxidants (Table 1). Since benzoquinone was found to be an excellent oxidant for dimerization of **4a** to **6a**,¹¹ SnO_2 and benzoquinone were used in combination. Heating a mixture of **4a**, SnO_2 , and benzoquinone in toluene in a sealed tube at 100 °C gave a mixture of

three products **5a**, **6a**, and the desired quinone **8a** in 30, 26, and 11% yields, respectively (entry 1). When the oxidation reaction was conducted in air-saturated toluene, the yield of **8a** was slightly improved (entry 2). The best result was obtained by the use of oxygen-saturated toluene as the solvent. Thus, on heating with SnO_2 in oxygen-saturated toluene, the naphthol **4a** underwent oxidative dimerization followed by cyclization to afford **8a** in 62% yield (entry 3).

Next, reaction of the naphthol **4b** was examined. Since the use of conditions similar to those employed for the reaction of **4a** (SnO_2/O_2 , toluene, 100 °C) gave a complex mixture, other semiconductors such as TiO₂, Nb₂O₅, and ZrO₂ were examined. Among them, ZrO₂ afforded **8b** in 19% yield, along with **5b** (8%) and unidentified products (Scheme 2).

Scheme 2

One-pot oxidative dimerization-cyclization sequences of 4-methoxyphenols were also examined. Unfortunately, treatment of the phenol **4c** with SnO_2 in O_2 -saturated toluene at 100 °C again resulted in the formation of a complex mixture. After extensive experimentation, the use of Nb_2O_5 in place of SnO_2 was found to afford the quinone **8c** in 21% yield although unidentified by-products were still produced (Scheme 3).

Scheme 3

In the case of 4d, treatment with SnO_2 in O_2 -saturated toluene at 100 °C gave the dibenzofuran-1,4-dione 8d in 15% yield, along with unidentified products (Table 2, entry 1). Combined use of ZrO₂ and molecular oxygen appeared to be a milder oxidation system, and the starting 4d was recovered despite the prolonged reaction time (entry 2). Addition of K_2CO_3 shortened the reaction time and improved the yield of 8d, probably due to activation of substrate by conversion of the phenol 4d to phenoxide (entry 3). Finally, we attempted a one-pot synthesis of the dibenzofuran-1,4-dione **8e**, a model compound of popolohuanone $E^{,6b,9}$ from the phenol **4e**. However, the use of ZrO_2 , Nb_2O_5 , TiO_2 , SnO_2 , and Ag_2O gave **8e** only in very low yield (<10%) although the reason remains unclear. For example, heating **4e** with ZnO_2 in O_2 -saturated toluene at 100 °C gave only 6% yield of **8e** accompanied by many unidentified products.

In summary, we examined the feasibility of one-pot synthesis of dibenzofuran-1,4-diones **8a-e** from 4-methoxyphenols (or 4-methoxy-1-naphthols) **4a-e** and found that the use of a combination of a semiconductor and molecular oxygen afforded the desired product **8** in some cases.

EXPERIMENTAL

General

Melting points are uncorrected. IR spectra were recorded with a Shimadzu FTIR-3200A spectrophotometer. ¹H and ¹³C NMR spectra were measured on JEOL JNM-AL300 and JEOL JNM- α -500 spectrometers. High-resolution mass spectra (HRMS) were obtained with a JEOL JMS-D300 or a JEOL JMS-HX110 instrument. Column chromatography was performed on Silica gel 60 (0.040-0.063 mm) under pressure.

4,4'-Dimethoxy[2,2']binaphthalenyl-1,1'-diol (5a),

4,4'-Dimethoxy[2,2']binaphthalenylidene-1,1'-dione (6a),

5-Methoxydinaphtho[1,2-b;2',3'-d]furan-7,12-dione (8a) (Table 1).

Entry 1: Argon gas was bubbled into a solution of 4-methoxy-1-naphthol (4a) (50 mg, 0.29 mmol)

in toluene (15 mL) until saturation. Stannic oxide (5 g) and 1,4-benzoquinone (38 mg, 0.35 mmol) were added to the solution, and the mixture was heated in a sealed tube at 100 °C for 7 h, then filtered, and the filtrate was concentrated under reduced pressure. The residue was chromatographed on silica gel with CH₂Cl₂-hexane (1:1) to give **5a** (15 mg, 30%), **6a** (13 mg, 26%), **8a** (5.2 mg, 11%). **5a**: Colorless needles, mp 223.0-224.0 °C (benzene). IR (KBr): 3435 cm⁻¹; ¹H-NMR (CDCl₃) δ 3.99 (6H, s), 5.44 (2H, s), 6.73 (2H, s), 7.58-7.61 (4H, m), 8.28-8.30 (4H, m); MS *m*/*z* 346 (M⁺); HRMS calcd for C₂₂H₁₈O₄ 346.1200, found 346.1222. **6a**: Deep blue needles, mp 257-258 °C (benzene); IR (KBr) 1605, 1585 cm⁻¹; ¹H-NMR (CDCl₃) δ 4.08 (6H, s), 7.48 (2H, t, *J* = 7.7 Hz), 7.61 (2H, t, *J* = 7.7 Hz), 7.79 (2H, d, *J* = 7.7 Hz), 8.17 (2H, d, *J* = 7.7 Hz), 8.42 (2H, s); MS *m*/*z* 344 (M⁺); HRMS calcd for C₂₂H₁₈O₄ 344.1044, found 344.1029. **8a**: ¹H NMR (CDCl₃) δ 4.12 (3H, s), 7.48 (1H, s), 7.61-7.80 (4H, m), 8.22-8.45 (4H, m); ¹³C NMR (CDCl₃) δ 56.2, 95.9, 119.3, 121.0, 121.5, 123.6, 125.3, 126.7, 126.97, 127.03, 127.6, 128.1, 132.9, 133.4, 133.86, 133.90, 149.1, 152.6, 155.0, 174.4, 182.1. These ¹H and ¹³C NMR spectra were consistent with those reported.⁹

Entry 3: Oxygen gas was bubbled into a solution of 4-methoxy-1-naphthol (**4a**) (50 mg, 0.29 mmol) in toluene (15 mL) until saturation. Stannic oxide (5 g) was added to the solution, and the mixture was heated in a sealed tube at 100 °C for 7 h, then filtered, and the filtrate was concentrated under reduced pressure. The residue was chromatographed on silica gel with CH_2Cl_2 -hexane (1:1) to give **8a** (29.5 mg, 62%).

4,4',8,8'-Tetramethoxy[2,2']binaphthalenyl-1,1'-diol (5b) and 1,5,8-trimethoxydinaphtho-[1,2-*b*;2',3'-*d*]furan-7,12-dione (8b).

Using a procedure similar to that for **8a** (Table 1, entry 3), 4,8-dimethoxy-1-naphthol (**4b**) (50 mg, 0.25 mmol) was treated with zirconium oxide (5 g) in oxygen-saturated toluene (15 mL). After work-up, the crude material was chromatographed on silica gel with CH₂Cl₂ to give **5b** (4.0 mg, 8%) and **8b** (9.2 mg, 19%). **5b**: Colorless needles, mp 207.0-209.0 °C (CHCl₃-hexane); IR (KBr) 3350 cm⁻¹; ¹H NMR (CDCl₃) δ 3.95 (6H, s), 4.03 (6H, s), 6.87 (2H, d, *J* = 8.6 Hz), 6.92 (2H, s), 7.35 (2H, t, *J* = 8.6 Hz), 7.89 (2H, d, *J* = 8.6 Hz), 9.87 (2H, s); ¹³C NMR (CDCl₃) δ 56.0, 56.1, 105.2, 109.4, 115.7, 116.0, 119.4, 125.0, 127.6, 144.7, 147.6, 156.2. These ¹H and ¹³C NMR spectra were consistent with those reported.^{10b} **8b**: IR (KBr) 1665, 1580 cm⁻¹; ¹H NMR (CDCl₃) δ 4.081 (3H, s), 4.085 (3H, s), 4.16 (3H, s), 7.10 (1H, d, *J* = 7.9 Hz), 7.35 (1H, d, *J* = 8.2 Hz), 7.55 (1H, dd, *J* = 7.9, 8.2 Hz), 7.67 (1H, s), 7.70 (1H, dd, *J* = 7.3, 8.2 Hz), 7.96 (2H, m); ¹³C NMR (CDCl₃) δ 56.1, 56.2, 56.5, 97.1, 107.6, 113.7, 115.4, 118.4, 119.9, 120.5, 120.7, 125.6, 127.8, 128.7, 134.9, 135.7, 148.7, 150.9, 154.4, 155.4, 160.4, 173.6, 182.3. These ¹H and ¹³C NMR spectra were consistent with those reported.¹⁰

3,7,8-Trimethoxydibenzofuran-1,4-dione (8c).

Using a procedure similar to that for **8a** (Table 1, entry 3), 3,4-dimethoxyphenol (**4c**) (50 mg, 0.32 mmol) was treated with niobium(V) oxide (5 g) in oxygen-saturated toluene (15 mL). After work-up, the crude material was chromatographed on silica gel with CH_2Cl_2 -AcOEt (10:1) to give **8c** (10.4 mg, 21%). IR (KBr) 1680, 1645, 1605, 1560 cm⁻¹; ¹H NMR (CDCl₃) δ 3.90 (3H, s), 3.98 (3H, s), 3.99 (3H, s), 5.86 (1H, s), 7.07 (1H, s), 7.47 (1H, s); ¹³C NMR (CDCl₃) δ 56.47, 56.53, 57.0, 95.2, 102.5, 106.8, 114.9, 123.7, 149.5, 149.7, 152.8, 153.2, 159.8, 170.1, 183.5. These ¹H and ¹³C NMR spectra were consistent with those reported.⁹

3,3'-di-*tert*-Butyl-5,5'-dimethoxybiphenyl-2,2'-diol (5d) and 2,6-Di-*tert*-butyl-8-methoxydibenzofuran-1,4-dione (8d) (Table 2, entry 3).

Using a procedure similar to that for **8a** (Table 1, entry 3), 3-*tert*-butyl-4-hydroxyanisol (**4d**) (50 mg, 0.28 mmol) was treated with zirconium oxide (5 g) and potassium carbonate (383 mg, 2.8 mmol) in oxygen-saturated toluene (15 mL). After work-up, the crude material was chromatographed on silica gel with CH₂Cl₂-AcOEt (8:1) to give **5d** (2 mg, 4%) and **8d** (15 mg, 32%). **5d**: Colorless powder, mp 228.5-229.5 °C (CH₂Cl₂); IR (KBr) 3420 cm⁻¹; ¹H NMR (CDCl₃) δ 1.43 (18H, s), 3.78 (6H, s), 5.01 (2H, s), 6.63 (2H, d, *J* = 3.1 Hz), 6.96 (2H, d, *J* = 3.1 Hz); ¹³C NMR (CDCl₃) δ 27.5, 33.2, 53.8, 109.7, 113.3, 121.2, 136.9, 143.9, 151.2; MS (*m*/*z*) 358 (M⁺); HRMS calcd for C₂₄H₂₂O₆ 358.2136, found 358.2133. **8d**: ¹H NMR (CDCl₃) δ 1.38 (9H, s), 1.49 (9H, s), 3.90 (3H, s), 6.60 (1H, s), 7.04 (1H, d, *J* = 2.6 Hz), 7.45. (1H, d, *J* = 2.6 Hz); ¹³C NMR (CDCl₃) δ 29.7, 34.6, 35.6, 55.9, 100.5, 116.9, 123.4, 124.1, 131.0, 137.9, 150.1, 151.0, 156.9, 158.3, 177.6, 184.5. These ¹H and ¹³C NMR spectra were consistent with those reported.⁹

2,6-Bis-cyclohexylmethyl-3,7,8-trimethoxydibenzofuran-1,4-dione (8e).

Using a procedure similar to that for **8a** (Table 1, entry 3), 2-cyclohexylmethyl-3,4-dimethoxyphenol (**4e**) (50 mg, 0.20 mmol) was treated with zirconium oxide (5 g) oxygen-saturated toluene (15 mL). After work-up, the crude material was chromatographed on silica gel with hexane-AcOEt (20:1) to give **8e** (2.7 mg, 6%). ¹H NMR (CDCl₃) δ 0.95-1.75 (22H, m), 2.43 (2H, d, *J* = 7.2 Hz), 2.81 (2H, d, *J* = 7.3 Hz), 3.88 (3H, s), 3.95 (3H, s), 4.08 (3H, s), 7.41 (1H, s). The signals were consistent with reported data.⁹

ACKNOWLEDGEMENTS

This research was supported by a Grant-in-aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

REFERENCES (AND NOTES)

- 1. For popolohuanone E, see: J. R. Carney and P. J. Scheuer, *Tetrahedron Lett.*, 1993, 34, 3727.
- For violet-quinone, see: A. V. B. Sankaram, V. V. N. Reddy, and G. S. Sidhu, *Phytochemistry*, 1981, 20, 1093.
- For other natural products containing a dibenzofuran-1,4-dione core, see: (a) K. Ishiguro, Y. Ohira, and H. Oku, J. Nat. Prod., 1998, 61, 1126. (b) M. Xu, Z. Deng, M. Li, J. Li, H. Fu, P. Proksch, and W. Lin, J. Nat. Prod., 2004, 67, 762. (c) C. Puder, K. Wagner, R. Vettermann, R. Hauptmann, and O. Potterat, J. Nat. Prod., 2005, 68, 323. (d) O. Kayser, A. F. Kiderlen, H. Laatsch, and S. L. Croft, Acta Tropica, 2000, 77, 307.
- For biological activities of synthetic compounds containing a dibenzofuran-1,4-dione core, see: (a) C. C. Cheng, Q. Dong, D. F. Liu, Y. L. Luo, L. F. Liu, A. Y. Chen, C. Yu, N. Savaraj, and T. C. Chou, *J. Med. Chem.*, 1993, **36**, 4108. (b) H. A. M. Hejaz, L. W. L. Woo, A. Purohit, M. J. Reed, and B. V. L. Potter, *Bioorg. Med. Chem.*, 2004, **12**, 2759. (c) K. Lee, Y. Park, S. Park, J. Hwang, S. Lee, G. Kim, W. Park, S. Lee, D. Jeong, J. Kong, H. Kang, and H. Cho, *Bioorg. Med. Chem. Lett.*, 2006, **16**, 737.
- For construction of 1 by cyclization of 2,2'-biquinones, see: (a) R. Buchan, and O. C. Musgrave, J. Chem. Soc., Perkin Trans. 1, 1980, 90. (b) T. Ogata, I. Okamoto, E. Kotani, and T. Takeya, Tetrahedron, 2004, 60, 3941. (c) J. C. Anderson, R. M. Denton, and C. Wilson, Org. Lett., 2005, 7, 123.
- For construction of 1 by coupling reaction of dichloro-quinones with phenols, see: (a) A. Shand and R. H. Thomson, *Tetrahedron*, 1963, 19, 1919. (b) Y. Ueki, M. Itoh, T. Katoh, and S. Terashima, *Tetrahedron Lett.*, 1996, 37, 5719. (c) T. Katoh, M. Nakatani, S. Shikita, R. Sampe, A. Ishiwata, O. Ohmori, M. Nakamura, and S. Terashima, *Org. Lett.*, 2001, 3, 2701. See also ref. 4.
- For construction of 1 by transition metal-mediated cyclization, see: (a) E. Martinez, L. Martinez, J. C. Estevez, R. J. Estevez, and L. Castedo, *Tetrahedron Lett.*, 1998, **39**, 2175. (b) H. Chang, T. Chou, N. Savaraj, L. F. Liu, C. Yu, and C. C. Cheng, *J. Med. Chem.*, 1999, **42**, 405. (c) E. Martinez, L. Martinez, M. Treus, J. C. Estevez, R. J. Estevez, and L. Castedo, *Tetrahedron*, 2000, **56**, 6023. (d) A. Martinez, M. Fernandez, J. C. Estevez, R. J. Estevez, and L. Castedo, *Tetrahedron*, 2005, **61**, 1353. (e) J. M. Miguel del Corral, M. A. Castro, M. Gordaliza, M. L. Martin, A. M. Gamito, C. Cuevas, and A. San Feliciano, *Bioorg. Med. Chem.*, 2006, **14**, 2816.
- 8. For construction of **1** by lithiation-mediated cyclization, see: M. S. Azevedo, G. B. C. Alves, J. N. Cardoso, R. S. C. Lopes, and C. C. Lopes, *Synthesis*, 2004, 1262.
- 9. T. Takeya, H. Kondo, T. Otsuka, K, Tomita, I. Okamoto, and O. Tamura, Org. Lett., 2007, 9, 2807.
- 10. (a) T. Otsuka, I. Okamoto, E. Kotani, and T. Takeya, Tetrahedron Lett., 2004, 45, 2643. (b) T.

Takeya, H. Doi, T. Ogata, T. Otsuka, I. Okamoto, and E. Kotani, *Tetrahedron*, 2004, **60**, 6295. (c) T. Takeya, T. Otsuka, I. Okamoto, and E. Kotani, *Tetrahedron*, 2004, **60**, 10681.

T. Takeya, H. Kondo, T. Otsuka, H. Doi, I. Okamoto, and E. Kotani, *Chem. Pharm. Bull.*, 2005, 53, 199.