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Abstract – Five olefins, each possessing an aryl (Ar) group, an aliphatic moiety, 

and a protected amino group as N-Teoc (-CO2(CH2)2TMS) or N3 at the aliphatic 

end, were converted to the corresponding epoxides with high ee.  The amino 

group was generated by deprotection of the N-Teoc group with CsF or by 

Staudinger reaction of the azide group at elevated temperatures, under which the 

intramolecular epoxide ring-opening with the resulting amino group took place 

concomitantly to afford the analogues of the Cinchona alkaloids. 

The Cinchona alkaloids are an important class of compounds not only as drugs but also as catalysts for 

asymmetric reactions (Figure 1).1  Discrimination of a prochiral element by the quinoline ring and the 

polar functional groups is the key step for the enantioselection.  Except a few cases, most of the 

reactions with the natural Cinchona alkaloids and their derivatives have shown the moderate levels of  
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Figure 1. The major constitutes of the Cinchona alkaloids.     

 

† In celebration of the 75th birthday of Professor Ekkehard Winterfeldt.  
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selectivity and reactivity.  One approach to improve the efficiency is the structural modification on the 

quinoline and quinuclidine rings by synthesis.2–4  However, except for our syntheses, the previous 

syntheses suffer from the low efficiency and the poor flexibility.    

 
Recently, we have established a synthesis of quinine (1a) and quinidine (2a),5 which features 

stereocontrolled construction of the cis 3,4-disubstituted piperidine as the precursor of the quinuclidine 

ring, epoxide ring formation, and its opening by the piperidine nitrogen, furnishing the quinine 

framework.6,7  Use of the Teoc protective group (Teoc = -CO2(CH2)2TMS) is the additional advantage of 

the synthesis.  The Teoc group is easily installed onto the nitrogen atom and removed with CsF.  With 

these procedures in hand, we explored a method to afford a series of Cinchona analogues 3 with the 

quinuclidine ring and 4 with the piperidine ring (Figure 2).  As the Ar part, we selected a–d, and, in 

practice, synthesized compounds 3d, 4a–d, and ent-4d (the enantiomer of 4d) to evaluate high potential 

of the present method.   
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Figure 2.  Cinchona analogues 3 and 4.     

 

We envisioned olefin 12 as the key intermediate leading to the first target 3d8 (Scheme 1).  The 

synthesis commenced with protection of commercially available piperidone·HCl·H2O adduct 5 with 

TeocCl (generated in situ from triphosgene and TMS(CH2)2OH) and an amine base.  Among the four 

amines examined (Et3N, pyridine, DMAP, N-Me-imidazole), DMAP afforded N-Teoc-piperidone 6 most 

efficiently (79% yield).9  Horner-Wadsworth-Emmons reaction of 6 followed by hydrogenation 

produced ester 7, which was reduced to aldehyde 8 in good yield.  Reaction of 8 with anion 9d derived 

from 10 and LDA gave alcohol 11 in 63% yield, which was converted stereoselectively to the key olefin 

12 (J = 15 Hz for olefin protons) by elimination of MsOH with t-BuOK in THF.      

 
To complete the synthesis, olefin 12 was subjected to the Sharpless asymmetric dihydroxylation (AD)10 

with AD-mix-β and the resulting diol 13 (> 99% ee by chiral HPLC, Chiralcel OD-H, hexane/i-PrOH = 

90 : 10, 0.5 mL/min, 40.2 and 60.1 min for the major and minor isomers, respectively) was converted 

efficiently to epoxide 14 by the standard procedure.11  Finally, 14 was exposed to CsF at 110 °C, under   
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  Scheme 1. Synthesis of 3d.   

 

which deprotection of the Teoc group and intramolecular epoxide ring-opening by the piperidine 

nitrogen of 15 took place in one pot to furnish 3d12 in 60% yield.  Overall yield from 5 in 10 steps was 

14%.  Since the anion 9d obviously can be replaced by another anion such as that used in the later 

Schemes, various aryl groups would by systematically installed as Ar in 3 by using the present method.13     

 
For the synthesis of the piperidines 4, we chose an azide group that is convertible to an amino group by 

Staudinger reaction.14,15  Reaction of aldehyde 1616 with the anion 9d produced alcohol 17d, which was 

converted to the trans olefin 18d (J = 15 Hz for olefin protons) through elimination of MsOH in 77% 

yield from aldehyde 16 (Scheme 2).  The TBS group was removed with HF and the resulting hydroxy 

group was substituted by an azide group using the Mitsunobu reaction17 (HN3, DIAD, PPh3).  However, 

close Rf values between azide 20d and a by-product derived probably from DIAD prevented complete 

separation by chromatography, and the contamination, even though a small quantity, substantially 

impeded the AD reaction.  We then took a detour through mesylation and substitution with NaN3 to 

afford azide 20d in 65% yield (2 steps).  AD reaction of 20d with AD-mix-β proceeded cleanly to 

afford diol 21d (>99% ee by chiral HPLC), which was transformed into the epoxy-azide 22d in good 

yield.  Finally, Staudinger reaction with PPh3 in refluxing aqueous THF furnished the target 4d4d in 81% 

yield.18  Total yield in 9 steps was 28%.   
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 Scheme 2. Synthesis of 4c and 4d.  For c series, R = H; d series, R = OMe. 

 

Similarly, 4c19 of a cinchonine/cinchonidine analogue was synthesized in 33% overall yield from 

aldehyde 16 through diol 21c of > 99% ee in 9 steps (Scheme 2).   

 

The azide strategy was applied to synthesis of phenyl and naphthyl derivatives 4a,b.  The first step in 

the synthesis of 4b (Scheme 3) was Wittig-type olefination of aldehyde 16 with phosphonate 2320 to 

afford, after hydrolysis of the TBS group, the trans olefin 19b exclusively in 77% yield.  An azide 

group was attached to 19b by using Mitsunobu reaction to produce 20b in 91% yield.  The by-product 

derived from DIAD was easily separated by chromatography.  The resulting transformation including  
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Scheme 3. Synthesis of 4b.        
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AD reaction with AD-mix-β, epoxidation, and Staudinger reaction14 of the resulting epoxy-azide 22b 

proceeded   smoothly to afford naphthyl derivative 4b4a in good yield.  The overall yield from 16 in 6 

steps was 46%.   

 
Similar transformation starting with reaction between aldehyde 16 and PhCH2P(O)(OEt)2 proceeded 

efficiently as well, furnishing phenyl derivative 4a4b,4c,21,22 in 52% overall yield from 16 (Scheme is not 

shown).    

 
In the above syntheses of the Cinchona derivatives, AD-mix-β was used to create the stereocenters of the 

natural configuration.  High selectivity and yields were also attained with AD-mix-α as summarized in 

Table 1.  The diol products ent-21a–d are convertible to the enantiomers of 4a–d.  In practice, ent-21d 

was transformed into ent-4d with a similar efficiency.       

 

Table 1. Results of AD reaction of 20a–d.       

Ar
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OHAr

HO

OHAr

AD-mix-! or -"

MsNH2

or

20a–d
21a–d ent-21a–d

0 °C to rt

        
 

 21 from AD-mix-β  ent-21 from AD-mix-α 

substrate yielda %eeb  yielda %eeb 
  chiral  
  column 

hexane : 
i-PrOH 

20a 81 >98  88 >99   Chiralcel OJ-H 90 : 10 

20b 98 >99  91 >98   Chiralcel OD-H 80 : 20 

20c 84 >99  85 >99   Chiralcel OD-H 90 : 10 

20d 98 >99  98 >98   Chiralcel OD-H 90 : 10 
a Isolated yields. b Determined by chiral HPLC.    

 

In summary, we have established a method for the synthesis of a series of analogues possessing the key 

structural features of the Cinchona alkaloids.23  Both enantiomers are now accessible with an equal 

effort.  Moreover, the method would be applicable to diversity-oriented synthesis to find an efficient 

catalyst.   
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