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Abstract – A new total synthesis of (±)-lauthisan was accomplished based on the 

endo-mode ring-closing reaction of 1-(5-hydroxyhept-1-yl)-3-pentyl-1- 

phenylsulfonylallene.

As a part of our programs1 on the development of the efficient methods for the preparation of various 

kinds of ring-closed products, we reported a novel method for the synthesis of five- to medium-sized 

oxacycles 2 based on the endo-mode ring-closing reaction of 1,1-disubstituted allenes 1, which possess 

both an electron-withdrawing group and the ω-hydroxyalkyl appendage at C1-position of the allenyl 

moiety (Scheme 1).2 This paper deals with several experiments regarding the scope of the endo-mode 

ring-closing reaction using tri-and tetrasubstituted allenes and its application to synthesis of (±)-lauthisan3 

as a preliminary examination for total syntheses of marine natural products, laurencin and laurefucin.  
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Scheme 1. Endo-mode ring-closing reaction of allenyl alcohols 

 

The tri- and tetrasubstituted allenes 3 and 4 for the ring-closing reaction were prepared by the similar 

procedure described for the preparation of 1.2 The ring-closing reaction of 3 was carried out according to 

the previously optimized conditions2 for the ring-closing reaction of 1,1-disubstituted allenes 1. Thus, 

compound 3a was exposed to t-BuOK (1.5 equiv) in t-BuOH at room temperature for less than 5 min to 

† This paper is dedicated to Professor Dr. Ekkehard Winterfeldt on the occasion of his 75th birthday. 
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produce the endo-double bond derivative, endo-5a, along with the exo-double bond isomer, exo-(Z)-5a 

(87%: endo-5a : exo-(Z)-5a = 73 : 27) (Table 1, Entry 1).4 Similar treatment of the one carbon 

homologated 3b predominantly furnished the exo-double bond derivative, exo-(E)-5b, along with 

endo-5b (89%: endo-5b : exo-(E)-5b = 19 : 81) (Entry 2). The exclusive formation of the exo-double 

bond derivatives, exo-(E)-5c and exo-(E)-5d, were recorded when 3c and 3d were submitted to the 

ring-closing conditions (Entries 3,4).  
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Table 1. Ring-closing reaction of 1,1,3-trisubstituted allenes 

 

Independent exposure of endo-5a and exo-5a to the ring-closing conditions for a longer reaction time (1 

h) provided an equilibrium mixture of endo-5a and exo-5a in a ratio of 90 to 10. The six-membered 

endo-5b was found to be stable under the ring-closing conditions, while exo-(E)-5b was completely 

isomerized to endo-5b within 5 h. These experiments revealed that endo-5a,b must be thermodynamically 

controlled products. It should be mentioned that both seven- and eight-membered products exo-5c,d were 

inactive toward base-catalyzed isomerization. 

We next investigated the endo-mode ring-closing reaction of tetrasubstituted allenes 4. Exposure of 4 to 

the standard basic conditions consistently gave the exo-double bond isomers, exo-6, in high yields and the 

corresponding endo-double bond derivatives could not be detected in the reaction mixture (Table 2). The 

exo-6 was shown to be stable under the basic conditions and no isomerization to the corresponding 

endo-derivatives could be observed. Thus, it can be concluded that the endo-mode ring-closing reaction 

of phenylsulfonylallenes, leading to the formation of five- to eight-membered oxacycles, proceeds 

irrespective of the substitution pattern at the allenic terminus.  
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Table 2. Ring-closing reaction of tetrasubstituted allenes 
 

Synthesis of (±)-lauthisan (11) by taking advantage of the endo-mode ring-closing reaction of 

1,1,3-trisubstituted allene was the next subject in this paper. Thus, protection of the secondary hydroxyl 

moiety of the known non-1-yn-7-ol (7)5 with the TBS was followed by treatment with n-BuLi in THF at 

–78 °C and the resulting acetylide was quenched by hexanal to give the propargyl alcohol 86 in 77% yield. 

Compound 8 was then converted into the trisubstituted allene 96 in 94% yield. Exposure of 9 to the 

standard ring-closing conditions (t-BuOK in t-BuOH at room temperature for 40 min) furnished 

(E)-8-ethyl-2-hexylidene-3-(phenylsulfonyl)oxocane (10)7 in 81% yield. The final stage of this synthesis 

was the removal of a phenylsulfonyl group as well as reduction of enol ether moiety. Treatment of 10 

with Mg in MeOH at 50 °C8 effected dephenylsulfonylation to produce the corresponding 

eight-membered oxacycle, which was subsequently exposed to Et3SiH in THF in the presence of 

TMSOTf at –78 °C9 to afford (±)-lauthisan (11)10, 11 in 73% yield (Scheme 2). 
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Scheme 2. Synthesis of (±)-lauthisan 
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In conclusion, we have described here that (i) tri- and tetrasubstituted allenes were suitable substrates in 

the endo-mode ring-closing reaction and (ii) successful application of our method to completion of the 

total synthesis of (±)-lauthisan (11) from the known non-1-yn-7-ol (7).  
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