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Abstract – Spirocyclization of an N-acyliminium ion with pyridine activated by a 

2-methoxy substituent as an aromatic π-nucleophile was developed.  The 

reactions proceeded in the presence of Brønsted acids at a high temperature, 

producing tricyclic spirolactams that possess the ability to act as conformationally 

constrained nicotine analogues.

INTRODUCTION  

N-Acyliminium ions are an extremely important species in the field of the synthesis of 

nitrogen-containing natural products.  A large number of reactions between N-acyliminium ions and 

nucleophiles have been developed to date, and have found widespread use in the total synthesis of 

bioactive natural products,1 in which many species such as olefins, allylsilanes, and aromatic rings act as 

π-nucleophiles in inter- or intramolecular reactions involving spirocyclizations.2-8  Since the 

electron-withdrawing pyridine ring possesses the low nucleophilicities, spirocyclizations of 

N-acyliminium ions with tethered pyridines as a π-nucleophile have been hardly found.  However, the 

reaction between N-acyliminium ions and activated pyridines has been reported by Padwa et. al.9  They 

demonstrated the intramolecular cyclizations of N-acyliminium ions derived from N-substituted 
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phthalimide tethering to 2-methoxypyridines, under refluxing benzene in the presence of TsOH, 

producing tetracyclic lactams in good yield, while N-acyliminium cyclization of α-hydroxypyrrolidinones 

tethering to pyridines under the same conditions led to tricyclic lactams in very low yield. 

Herein we report a new spirocyclization of an N-acyliminium ion with activated pyridine to afford spiro 

lactams possessing pyridine or pyridone nucleus. 

 

RESULTS AND DISCUSSION  

We began our investigation by preparing the acyclic amido ketone 12, a cyclic N-acyliminium ion 

precursor, starting from the allylic alcohol 110 as shown in Scheme 1.  Protection of the hydroxy group 

of 1 as the TBDMS ether and hydroboration with 9-BBN gave the primary alcohol 3 in 95% yield, which 

was then transformed into the iodide 5 by tosylation followed by treatment with sodium iodide.  

Treatment of 6-methyl-2-methoxypyridine11 with n-BuLi in THF at 0 °C and coupling of the resulting 

alkyl lithium with 5 gave the heptylpyridine derivative 6 in 91% yield.  Removal of the PMB group with 

DDQ and two-step oxidation (Parikh–Doering oxidation/Pinnick oxidation) of the resulting alcohol 7 

yielded the carboxylic acid 9 in 88% yield.  Condensation of 9 with BnNH2 was achieved by using 

diethyl cyanophosphonate (DEPC) to provide the N-benzylamide 10 in 98% yield.  Finally,  
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Scheme 1. Synthesis of the N-benzylamide 12 a) TBDMSCl, Imidazole, DMF, rt, 12 h, 90%; b) 9-BBN, THF,
rt, 12 h, then 35% H2O2 aq., 3 M NaOH aq., rt, 1 h, 95%; c) TsCl, Et3N, DMAP, CH2Cl2, rt, 3 h; d) NaI, 2-
butanone, refl., 1 h, 88% over 2 steps; e) 2-methoxy-6-methylpyridine, n-BuLi, –78 °C then rt, 30 min, 91%; f)
DDQ, CH2Cl2–H2O, rt, 30 min, 86%; g) SO3·Py, Et3N, DMSO, rt, 30 min; h) NaClO2, 2-methyl-2-butene,
NaH2PO4, tert-BuOH–H2O, rt, 1 h, 86% over 2 steps; i) BnNH2, DEPC, Et3N, THF, rt, 1 h, 98%; j) TBAF, THF, rt, 
12 h, 90%; k) (COCl)2, DMSO, Et3N, CH2Cl2, –78 °C, 1 h, 83%.  
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conversion of 10 to the requisite amido ketone 12 was accomplished via cleavage of the TBDMS ether 

with TBAF followed by Swern oxidation. 

 

Having obtained the amido ketone 12 in an efficient way, we investigated the spirocyclization of 12 via 

the cyclic N-acyliminium ion 13.  First, on the basis of Padwa’s result9 (described above), 12 was treated 

with TsOH in refluxing toluene for 120 h (Table 1, entry 1).12  TLC analysis indicated the complete 

disappearance of the starting material and the spirocyclization led to the desired spirolactam 1513 

containing a 2-methoxypyridine ring in 20% yield accompanied with the enamide 14,14 the 

N-methylpyridone derivative 16,15 and the N-norpyridone derivative 17.16  When the reaction was carried 

out using chlorobenzene as a solvent, the yields of all the spirolactams increased and 15 was obtained as a 

major product in 34% yield (entry 2).  The reaction conducted at a higher temperature in 

o-dichlorobenzene gave 15, 16, and 17 in 16%, 47%, and 25% isolated yields, respectively (entry 3).  

Similar results were obtained when PPTS or CSA was employed as an acid catalyst (entries 4, 5).  Under 

more harsh conditions using sulfuric acid as a catalyst, complete decomposition occurred (entry 6). 
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The formations of 16 and 17 are interpreted as resulting from the thermally induced rearrangement17 

and/or Hilbert–Johnson type reaction18 of the spirolactam 15 formed upon the spirocyclization of the 

N-acyliminium ion 13, which is in equilibrium with the enamide 14, derived by dehydration of the amido 

ketone 12 (Scheme 2). 
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Scheme 2. Plausible pathways to spirolactams 15, 16, and 17 via spirocyclization of the 
cyclic N-acyliminium ion 13  

 

In conclusion, we have developed an efficient methodology for the synthesis of spirolactams fused with 

2-methoxypyridine or 2-pyridone nucleus, based on the spirocyclization between an N-acyliminium ion 

and the side-chain pyridine ring activated by 2-methoxy substituent.  The obtained spirolactams possess 

the ability to act as conformationally constrained nicotine analogues. 
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