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Abstract – A short synthesis of the unique side-chain of psymberin (1) – the 

psymberic acid (4) – is presented. Notable features of it include a highly 

selective aldol addition and an attempted enzymatic resolution step.

Psymberin (or irciniastatin A) (1), isolated from marine sponges (Psammocinia sp.1 and Ircinia ramose2), 

is a member of the pederin (2) family. In contrast to other polyketides of this class,3 psymberin is potent 

as well as selective against a number of solid tumors thus triggering considerable synthetic efforts.4 A 

common feature to all compounds is the central pyran core (either as a pyran or a related trioxadecalin). 

The pederic acid (3) side chain is invariant; however, psymberic acid (4) in psymberin (1) is unique. Here 

we disclose our preliminary results on the synthesis of psymberic acid (4). 
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Figure 1  Members of the pederin family. 
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The starting point of our efforts were the chiral glycolic acid anion equivalents 5 that are readily available 

both in racemic as well as enantiomerically pure form (Scheme 1).5 The key-step to set-up the 2 

stereogenic centers was an aldol reaction between the enolate of the protected glycolic acid 5 and 

aldehyde 6. The aldehyde 6 is accessible via oxidation of the corresponding alcohol 7. Although the 

deconjugated product 6 could be isolated and purified, the yields were usually relatively low (62-64 %). 

Preferentially, the crude aldehyde 6 was directly added to the preformed enolate (from 5) at -78 °C. The 

anti-aldol product 8 was isolated in 85 % yield; no syn-side-product was detected.5 Next, O-methylation 

was attempted. As expected, standard deprotonation (e.g. with NaH), but also some less common variants 

(e.g. using Al2O3/Me2SO4), did not furnish product 9. Utilizing a proton sponge 

[1,8-bis(dimethylamino)naphthalene] – which proved to be superior to Et(i-Pr)2N – and Meerwein's salt 

did finally furnish the desired ether 9 in respectable yield (95 %). Deprotection to the α-hydroxy ester 10 

(81 %) and re-protection with benzoyl chloride was straight-forward; the benzoate 11 was obtained in 

>95 % yield. The sequence described was performed starting from rac-5 as well as (R,R)-5.6 
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Scheme 1  Synthesis of key intermediates towards psymberic acid (4). 
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With the racemic and enantiomerically pure intermediates 10 and 11 in our hands, we established an 

analytical base for a kinetic enzymatic resolution {HPLC on Chiracel OD-H stationary phase, 250 x 4.6 

mm, heptane:i-PrOH 95:5, 33 bar: tR [(S,S)-11] = 10.4 min, tR [(R,R)-11] = 11.4 min, tR [(S,S)-10] = 14.4 

min, tR [(R,R)-10] = 16.8 min} which would utilize the cheaper racemic ester rac-11. Upon screening 24 

different hydrolases, only moderate results were observed: While no lipase showed any conversion, some 

esterases were active. Unfortunately, the selectivity was in most cases not high. As a matter of fact, only 2 

esterases (chirazyme E3 from Roche Diagnostics GmbH and esterase BS1 from Julich Chiral Solutions 

GmbH) were moderately active and sufficiently selective (>96 % ee of the substrate 11) for our purposes. 

Best results were obtained with the esterase from Bacillus subtilis (BS1; Scheme 2). It was most 

convenient to optimize the conversion in order to isolate enantiomerically pure starting material (56 % 

conversion, 31 % yield, >99 % ee); however, the analysis proved that with respect to the desired natural 

product the wrong enantiomer (R,R)-11 was isolated. Hence we focused on the isolation of the alcohol 

(S,S)-10 at low conversion. When following the reaction by glc it was shown that the product was indeed 

enantiomerically pure throughout the enzymatic conversion. Nevertheless, no accumulation of product 

was observed and only low quantities of alcohol 10 could be detected. We speculated that psymberic acid 

(4) was directly formed in a consecutive step, but in no case considerable amounts could be isolated 

directly or after derivatisation (esterification with TMS-diazomethane). Instead a considerable number of 

side-products were detected rendering the biocatalytical approach unpractical at present. A non-enzymatic 

solution was the convenient hydrolysis of 1,4-dioxan-2-one (3S,1'S)-9 [from (R,R)-5]. The natural 

psymberic acid (4) was obtained in 82 % yield {[α]22
D = +21.6 (c = 0.25, CHCl3); all data in full 

agreement with those presented in the literature.4}. 
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Scheme 2  Syntheses of psymberic acid (4). 
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To conclude a short synthesis of the title compound was presented. In only 3 steps and 66 % overall yield 

from (R,R)-5 (or 4 steps from alcohol 7) psymberic acid (4) could be obtained. An alternative 

biocatalytical route was also devised: However, the only practical protocol for a kinetic enzymatic 

resolution via an esterase would unfortunately yield the enantiomer of the natural product. Further studies 

are in progress to adopt the current results for a total synthesis of psymberin (1) and related analogues. 
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(100) [M + Na+]; IR (film): 1724 cm-1; 1H NMR (600 MHz, CDCl3): 1.80 (s, 3 H, 5-Me), 2.41 (dd, J 

= 14.4 Hz and 4.9 Hz, 4-Ha), 2.52 (dd, J = 14.4 Hz and 7.9 Hz, 4-Hb), 3.50 (s, 3 H, 3-OMe), 3.79 (s, 

3 H, CO2Me), 3.92 (ddd, J = 7.9, 4.9 Hz and 2.6 Hz, 3-H), 4.85, 4.87 (2 br, 2 H, 6-H), 5.55 (d, J = 

2.6 Hz, 2-H), 7.47-8.10 (m, 5 H, arom. H) ppm; 13C NMR (150 MHz, CDCl3): 22.70 (5-Me), 39.09 

(C-4), 52.44 (CO2Me), 58.27 (3-OMe), 73.30 (C-2), 79.50 (C-3), 113.48 (C-6), 128.48, 129.33, 

129.96, 133.47 (arom. C), 141.50 (C-5), 165.84 (C=O), 168.59 (C-1); [α]D
20 = +15 (c = 0.16, 

CHCl3). 
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