
 

HETEROCYCLES, Vol. 77, No. 1, 2009, pp. 187 - 192. © The Japan Institute of Heterocyclic Chemistry   
Received, 13th May, 2008, Accepted, 27th June, 2008, Published online, 30th June, 2008.  
DOI: 10.3987/COM-08-S(F)17 

TRIFLIC IMIDE CATALYZED [3+2] CYCLOADDITION OF 

ALDIMINES WITH α,α-DIMETHYLALLYLSILANE 
 

Naoya Shindoh,1 Hidetoshi Tokuyama,2 Yoshiji Takemoto,1,* and Kiyosei 

Takasu1,* 

 
1Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, 

Sakyo-ku, Kyoto 606-8501, Japan 

E-mail: kay-t@pharm.kyoto-u.ac.jp 
2Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, 

Sendai 980-8578, Japan 

Abstract – Tf2NH-catalyzed [3+2] cycloaddition of N-aryl imines with 

α,α-dimethylallylsilane to give substituted pyrrolidines is described. We have 

found the mode of cycloaddition depends upon α-substituents of allylsilanes.

Triflic imide (Tf2NH), which is recognized as a super Brønsted acid,1 catalyzes several classes of C-C 

bond formation reactions.2 We have shown Tf2NH efficiently activates imines in hetero Diels-Alder 

reaction of imines with 2-siloxydienes.3,4 Moreover, we have recently reported Tf2NH-catalyzed cascade 

hetero Diels-Alder and hydrogen transfer reaction.5 Namely, treatment of N-aryl imine (1) with allylsilane 

(2) in the presence of a catalytic amount of Tf2NH afforded substituted quinoline (4) in a single operation 

along with amine (5). Notably, in the cascade reaction Tf2NH activates two mechanistically distinct 

reactions, such as hetero Diels-Alder reaction of 1 with 2 and hydrogen transfer between produced 

tetrahydroquinoline (3) and imine (1) (Scheme 1). During the course of our study, we observed that 

reaction of 1 with α,α-dimethylallylsilane in the presence of Tf2NH furnished, unexpectedly, not 

Scheme 1. Cascade hetero Diels-Alder and hydrogen transfer reaction catalyzed by Tf2NH 
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quinolines but substituted pyrrolidines. In this communication, we wish to describe the Tf2NH catalyzed 

[3+2] cycloaddition of imines with α,α-dimethylallylsilane. 

α,α-Dimethylallylsilane (8) bearing tert-butyldimethylsilyl (TBS) moiety was prepared by Wittig 

reaction of α-silylisobutyraldehyde (7), which was synthesized from acetaldehyde tert-butylimine (6) in 3 

steps,6 in 83% yield (Scheme 2). Imines (1a-1h) were prepared from the corresponding aldehydes and 

anilines according to a reported procedure.7 
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Scheme 2. Preparation of α,α-dimethylallylsilane 

 

First of all, reaction of 1a (3 equiv) with 8 (1 equiv) was attempted for the purpose of preparation of 

quinoline (9) under the reported conditions.5 As the result, neither 9 nor tetrahydroquinoline was observed, 

but formation of substituted pyrrolidine (10a), which corresponds to a [3+2] cycloadduct, was obtained 

in 77% yield (Scheme 3). When a mixture of 1a and 8 (molar ratio = 1 : 1.2) was treated with a catalytic 

amount of Tf2NH (10 mol%) in toluene at 60 oC for 24 h, 10a was obtained in 84% yield as a 3 : 2 mixture 

of diastereomers (Table 1, entry 1). In 1,2-dichloroethane, which has been reported to be an appropriate 

solvent for the Tf2NH-catalyzed hetero Diels-Alder reaction,5 [3+2] cycloaddition also promoted to 

furnish 10a in 76% yield (entry 2). 1H NMR spectra of each diastereomer of 10a,8 in which two sets of 

doublet peaks derived from p-trifluoromethylaniline moiety were observed, ruled out production of [4+2] 

cycloadducts, such as tetrahydroquinoline or quinoline (9). Careful recrystalization of a diastereomeric 

mixture of 10a from MeOH gave single crystals of cis-10a, which corresponds to the major diastereomer. 

The structure of cis-10a was confirmed unambiguously by an X-ray analysis (Figure 1).9 As shown in 

Table 1, benzylidene and heteroarylidene imines except for 2-pyridylidene imine (1e) underwent [3+2] 

cycloaddition to give substituted pyrrolidines (10) in 44―94% yield. All products were obtained as a 

diastereomeric mixture (cis : trans = 1 : 1 ― 3 : 2). In the reaction of 1b, homoallylamine (11b) was 

obtained in 27% yield along with 10b (entry 3). Since almost no formation of 11b was observed at the 

early stage of the reaction, not Hosomi-Sakurai type allylation to 1b10 but decomposition of 10b via 

β-silyl carbocation intermediate would cause formation of 11b. Actually, treatment of isolated 10b with 

Tf2NH (10 mol%) in refluxing toluene afforded 11b exclusively. Reaction of α,β-unsaturated imine (1h) 

was unsuccessful only to give a mixture of unidentified compounds (entry 10). We have assessed the 

multicomponent variant starting from three materials: an allylsilane, an aldehyde and an aniline (Scheme 
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4). Treatment of a mixture of 8, p-tolylaldehyde (12) and p-trifluoromethylaniline (13) (molar ratio = 1.2 : 

1 : 1) with 10 mol% of Tf2NH in toluene furnished the desired pyrrolidine (10a) in 78% yield as a 3 : 2 

mixture of diastereomers. 

Scheme 3. [3+2] Cycloaddition of 1a (X = CF3, R = p-tolyl) with 8 in the presence of Tf2NH 

 
Table 1. Tf2NH-catalyzed [3+2] cycloaddition of 1 with 8a 

entry imine (R, X) %yield of 10b dr (cis : trans)c 

1 1a (p-MeC6H4, CF3) 84 3 : 2 

2d 1a 76 1 : 1 

3e 1b (o-NO2C6H4, CF3) 61 3 : 2 

4 1c (2-furyl, CF3) 44 3 : 2 

5 1d (2-thienyl, CF3) 60 3 : 2 

6f 1d 70 3 : 2 

7 1e (2-pyridyl, CF3) 0 ― 

8 1f (p-MeC6H4, NO2) 94 1 : 1 

9 1g (p-MeC6H4, Br) 47 3 : 2 

10 1h ((E)-CH=CH-Ph, CF3) complex mixture ― 

aStandard conditions: 1 (1.0 equiv.), 8 (1.2equiv.), Tf2NH (10 
mol%), in toluene, at 60 oC, for 24 h. bYields were calculated 
based on 1. cDiastereomeric ratio was determined by 1H NMR. 
dReaction was carried out in 1,2-dichloroethane. 
eHomoallylamine (11b) was obtained in 27% yield. f20 Mol% of 
Tf2NH was used. 

Figure 1. Crystal structure of cis-10a (ORTEP drawing) 
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Scheme 4. Multicomponent reaction catalyzed by Tf2NH 

In sharp contrast to our previous results,5 the mode of cycloaddition depends upon α-substitution of the 

allylsilane. A plausible mechanism for reactions of imines with allylsilanes is outlined in Figure 2. With 

α-nonsubstituted allylsilane (2), [4+2] cycloaddition took place to give tetrahydroquinolines 3 through a 

stepwise manner. Namely, SE2’ reaction of 2 to imine (1) in the presence of Tf2NH would afford β-silyl 

cation intermediate (14), and then intramolecular addition of the aromatic carbon of 14 would promote to 

furnish [4+2] cycloadduct (3) (mode a). If intramolecular addition of the nitrogen atom of 14 takes place, 

azetidine (15) would be produced (mode b). In contrast, in the reaction with α,α-disubstituted allylsilane 

(8), intermediate (14) would transform into more stable β-silyl cation (16) or siliranium cation (17) by 

1,2-silyl shift or silacyclopronation, respectively.11 Then, intramolecular addition of the nitrogen atom of 

16 or 17 would afford [3+2] cycloadduct (10) (mode c). 
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Figure 2. A plausible mechanism for [3 + 2] cycloaddition and substituent effects 
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Although several studies on cycloaddition reactions of imines with allylsilanes have been reported,12—15 

studies to control modes of the cyloadditions are quite limited. Akiyama and his co-workers described 

[3+2] cycloaddition of N-sulfonyl imines with triisipropylsilylpropene in the presence of a stoichiometric 

amount of BF3-OEt2,13d whereas N-acyl and N-aryl imines took place [2+2]14 and [4+2] cycloadditions,15 

respectively. They concluded N-substituent of imines would be a control factor in the selective formation 

of [2+2], [3+2], or [4+2] cycloadducts. Our abovementioned study indicates α-substitution of 

allylsilane is one of factors to control the mode of cycloaddition of N-aryl imines with allylsilanes. 

In conclusion, reaction of imines with α,α-dimethylallylsilane in the presence of Tf2NH provides 

substituted pyrrolidines by [3+2] cycloaddition. We found the mode of cycloaddition depends upon 

α-substituents of allylsilanes. It is noteworthy that, to the best of our knowledge, it is the first example to 

achieve the catalytic [3+2] cycloaddition of imines with allylsilanes. 
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