HETEROCYCLES, Vol. 77, No. 1, 2009, pp. 187 - 192. © The Japan Institute of Heterocyclic Chemistry Received, 13th May, 2008, Accepted, 27th June, 2008, Published online, 30th June, 2008. DOI: 10.3987/COM-08-S(F)17

TRIFLICIMIDECATALYZED[3+2]CYCLOADDITIONOFALDIMINES WITH α,α-DIMETHYLALLYLSILANE

Naoya Shindoh,¹ Hidetoshi Tokuyama,² Yoshiji Takemoto,^{1,*} and Kiyosei Takasu^{1,*}

¹Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan

E-mail: kay-t@pharm.kyoto-u.ac.jp

²Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Sendai 980-8578, Japan

Abstract – Tf₂NH-catalyzed [3+2] cycloaddition of *N*-aryl imines with α, α -dimethylallylsilane to give substituted pyrrolidines is described. We have found the mode of cycloaddition depends upon α -substituents of allylsilanes.

Triflic imide (Tf₂NH), which is recognized as a super Brønsted acid,¹ catalyzes several classes of C-C bond formation reactions.² We have shown Tf₂NH efficiently activates imines in hetero Diels-Alder reaction of imines with 2-siloxydienes.^{3,4} Moreover, we have recently reported Tf₂NH-catalyzed cascade hetero Diels-Alder and hydrogen transfer reaction.⁵ Namely, treatment of *N*-aryl imine (**1**) with allylsilane (**2**) in the presence of a catalytic amount of Tf₂NH afforded substituted quinoline (**4**) in a single operation along with amine (**5**). Notably, in the cascade reaction Tf₂NH activates two mechanistically distinct reactions, such as hetero Diels-Alder reaction of **1** with **2** and hydrogen transfer between produced tetrahydroquinoline (**3**) and imine (**1**) (Scheme 1). During the course of our study, we observed that reaction of **1** with α, α -dimethylallylsilane in the presence of Tf₂NH furnished, unexpectedly, not

quinolines but substituted pyrrolidines. In this communication, we wish to describe the Tf₂NH catalyzed [3+2] cycloaddition of imines with α, α -dimethylallylsilane.

 α,α -Dimethylallylsilane (8) bearing *tert*-butyldimethylsilyl (TBS) moiety was prepared by Wittig reaction of α -silylisobutyraldehyde (7), which was synthesized from acetaldehyde *tert*-butylimine (6) in 3 steps,⁶ in 83% yield (Scheme 2). Imines (1a-1h) were prepared from the corresponding aldehydes and anilines according to a reported procedure.⁷

Scheme 2. Preparation of α , α -dimethylallylsilane

First of all, reaction of 1a (3 equiv) with 8 (1 equiv) was attempted for the purpose of preparation of quinoline (9) under the reported conditions.⁵ As the result, neither 9 nor tetrahydroquinoline was observed, but formation of substituted pyrrolidine (10a), which corresponds to a [3+2] cycloadduct, was obtained in 77% yield (Scheme 3). When a mixture of 1a and 8 (molar ratio = 1 : 1.2) was treated with a catalytic amount of Tf₂NH (10 mol%) in toluene at 60 °C for 24 h, **10a** was obtained in 84% yield as a 3:2 mixture of diastereomers (Table 1, entry 1). In 1,2-dichloroethane, which has been reported to be an appropriate solvent for the Tf₂NH-catalyzed hetero Diels-Alder reaction,⁵ [3+2] cycloaddition also promoted to furnish **10a** in 76% yield (entry 2). ¹H NMR spectra of each diastereomer of **10a**,⁸ in which two sets of doublet peaks derived from *p*-trifluoromethylaniline moiety were observed, ruled out production of [4+2]cycloadducts, such as tetrahydroquinoline or quinoline (9). Careful recrystalization of a diastereomeric mixture of 10a from MeOH gave single crystals of *cis*-10a, which corresponds to the major diastereomer. The structure of *cis*-10a was confirmed unambiguously by an X-ray analysis (Figure 1).⁹ As shown in Table 1, benzylidene and heteroarylidene imines except for 2-pyridylidene imine (1e) underwent [3+2] cycloaddition to give substituted pyrrolidines (10) in 44-94% yield. All products were obtained as a diastereometric mixture (*cis* : *trans* = 1 : 1 - 3 : 2). In the reaction of **1b**, homoallylamine (**11b**) was obtained in 27% yield along with 10b (entry 3). Since almost no formation of 11b was observed at the early stage of the reaction, not Hosomi-Sakurai type allylation to 1b¹⁰ but decomposition of 10b via β-silyl carbocation intermediate would cause formation of **11b**. Actually, treatment of isolated **10b** with Tf₂NH (10 mol%) in refluxing toluene afforded **11b** exclusively. Reaction of α , β -unsaturated imine (**1h**) was unsuccessful only to give a mixture of unidentified compounds (entry 10). We have assessed the multicomponent variant starting from three materials: an allylsilane, an aldehyde and an aniline (Scheme

4). Treatment of a mixture of **8**, *p*-tolylaldehyde (**12**) and *p*-trifluoromethylaniline (**13**) (molar ratio = 1.2: 1 : 1) with 10 mol% of Tf₂NH in toluene furnished the desired pyrrolidine (**10a**) in 78% yield as a 3 : 2 mixture of diastereomers.

Scheme 3. [3+2] Cycloaddition of 1a (X = CF₃, R = *p*-tolyl) with 8 in the presence of Tf₂NH

entry	imine (R, X)	%yield of 10^b	$\operatorname{dr}(\operatorname{cis}:\operatorname{trans})^c$
1	1a (<i>p</i> -MeC ₆ H ₄ , CF ₃)	84	3:2
2^d	1a	76	1:1
3 ^e	1b (<i>o</i> -NO ₂ C ₆ H ₄ , CF ₃)	61	3:2
4	1c (2-furyl, CF ₃)	44	3:2
5	1d (2-thienyl, CF ₃)	60	3:2
6 ^{<i>f</i>}	1d	70	3:2
7	1e (2-pyridyl, CF ₃)	0	—
8	$\mathbf{1f}\left(p\text{-MeC}_{6}\text{H}_{4},\text{NO}_{2}\right)$	94	1:1
9	1g (<i>p</i> -MeC ₆ H ₄ , Br)	47	3:2
10	1h ((<i>E</i>)-CH=CH-Ph, CF ₃)	complex mixture	_

Table 1. Tf₂NH-catalyzed [3+2] cycloaddition of **1** with $\mathbf{8}^{a}$

^aStandard conditions: **1** (1.0 equiv.), **8** (1.2 equiv.), Tf₂NH (10 mol%), in toluene, at 60 °C, for 24 h. ^bYields were calculated based on **1**. ^cDiastereomeric ratio was determined by ¹H NMR. ^dReaction was carried out in 1,2-dichloroethane. ^eHomoallylamine (**11b**) was obtained in 27% yield. ^f20 Mol% of

Tf₂NH was used.

11b (R = o-NO₂C₆H₄)

Figure 1. Crystal structure of *cis*-10a (ORTEP drawing)

In sharp contrast to our previous results,⁵ the mode of cycloaddition depends upon α -substitution of the allylsilane. A plausible mechanism for reactions of imines with allylsilanes is outlined in Figure 2. With α -nonsubstituted allylsilane (2), [4+2] cycloaddition took place to give tetrahydroquinolines 3 through a stepwise manner. Namely, S_E2' reaction of 2 to imine (1) in the presence of Tf₂NH would afford β -silyl cation intermediate (14), and then intramolecular addition of the aromatic carbon of 14 would promote to furnish [4+2] cycloadduct (3) (mode a). If intramolecular addition of the nitrogen atom of 14 takes place, azetidine (15) would be produced (mode b). In contrast, in the reaction with α , α -disubstituted allylsilane (8), intermediate (14) would transform into more stable β -silyl cation (16) or siliranium cation (17) by 1,2-silyl shift or silacyclopronation, respectively.¹¹ Then, intramolecular addition of the nitrogen atom of 16 or 17 would afford [3+2] cycloadduct (10) (mode c).

Figure 2. A plausible mechanism for [3 + 2] cycloaddition and substituent effects

Although several studies on cycloaddition reactions of imines with allylsilanes have been reported,^{12–15} studies to control modes of the cyloadditions are quite limited. Akiyama and his co-workers described [3+2] cycloaddition of *N*-sulfonyl imines with triisipropylsilylpropene in the presence of a stoichiometric amount of BF₃-OEt₂,^{13d} whereas *N*-acyl and *N*-aryl imines took place [2+2]¹⁴ and [4+2] cycloadditions,¹⁵ respectively. They concluded *N*-substituent of imines would be a control factor in the selective formation of [2+2], [3+2], or [4+2] cycloadducts. Our abovementioned study indicates α -substitution of allylsilane is one of factors to control the mode of cycloaddition of *N*-aryl imines with allylsilanes.

In conclusion, reaction of imines with α,α -dimethylallylsilane in the presence of Tf₂NH provides substituted pyrrolidines by [3+2] cycloaddition. We found the mode of cycloaddition depends upon α -substituents of allylsilanes. It is noteworthy that, to the best of our knowledge, it is the first example to achieve the catalytic [3+2] cycloaddition of imines with allylsilanes.

ACKNOWLEDGEMENTS

This work was financially supported by a Grant-in-Aid for Scientific Research and Targeted Proteins Research Program from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

REFERENCES

- 1. H. Yamamoto and M. B. Boxer, *Chimia*, 2007, **61**, 279.
- Recent representative examples, *see:* (a) K. Ishihara, Y. Hiraiwa, and H. Yamamoto, *Synlett*, 2001, 1851. (b) J. Cossy, F. Lutz, V. Alauze, and C. Meyer, *Synlett*, 2002, 45. (c) L. Zhang and S. A. Kozmin, *J. Am. Chem. Soc.*, 2004, **126**, 10204. (d) K. Inanaga, K. Takasu, and M. Ihara, *J. Am. Chem. Soc.*, 2005, **127**, 3668. (e) K. Takasu, S. Nagao, and M. Ihara, *Adv. Synth. Catal.*, 2006, **348**, 2376. (f) K. Takasu, N. Hosokawa, K. Inanaga, and M. Ihara, *Tetrahedron Lett.*, 2006, **47**, 6053. (g) M. B. Boxer and H. Yamamoto, *J. Am. Chem. Soc.*, 2006, **128**, 48. (h) M. E. Jung and D. G. Ho, *Org. Lett.*, 2007, **9**, 375. (i) K. Takasu, *J. Syn. Org. Chem., Jpn.*, 2008, **66**, 554.
- 3. A review of C-C bond formation reactions in the presence of a catalytic amount of Brønsted acids, *see*: T. Akiyama, *Chem. Rev.*, 2007, **107**, 5744.
- 4. K. Takasu, N. Shindoh, H. Tokuyama, and M. Ihara, *Tetrahedron*, 2006, 62, 11900.
- 5. N. Shindoh, H. Tokuyama, and K. Takasu, Tetrahedron Lett., 2007, 48, 4749.
- 6. L. F. Tietze, T. Neumann, M. Kajino, and M. Pretor, Synthesis, 1995, 1003.
- A. Simion, C. Simion, T. Kanda, S. Nagashima, Y. Mitoma, T. Yamada, K. Mimura, and M. Tashiro, J. Chem. Soc., Perkin Trans. 1, 2001, 2071.
- 8. Spectral data for *cis*-**10a**; Mp 169—170 °C (colorless pillars from MeOH); IR (KBr) 2953, 2854, 1613, 1523, 1324 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.23 (d, *J* = 8.0 Hz, 2H), 7.10 (d, *J* = 8.0 Hz,

2H), 7.05 (d, J = 8.0 Hz, 2H), 6.67 (d, J = 8.0 Hz, 2H), 4.74 (dd, J = 10.3, 6.3 Hz, 1H), 2.41 (ddd, J = 12.3, 6.3, 5.5 Hz, 1H), 2.40 (s, 3H), 1.78 (ddd, J = 14.9, 12.3, 10.3 Hz, 1H), 1.64 (s, 3H), 1.54 (dd, J = 14.9, 5.5 Hz, 1H), 0.92 (s, 9H), 0.19 (s, 3H), 0.02 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 147.8, 140.9, 136.4, 129.4, 125.9, 125.2 (q, ${}^{3}J_{(C,F)} = 3.6$ Hz), 124.0, 123.0 (q, ${}^{1}J_{(C,F)} = 269.9$ Hz), 117.7 (q, ${}^{2}J_{(C,F)} = 32.4$ Hz), 116.3, 66.7, 65.6, 39.7, 38.5, 27.5, 27.1, 26.8, 21.1, 17.2, -4.7, -6.0; LRMS (FAB) m/z 447 (M⁺), for *trans*-10b; ¹H NMR (400 MHz, CDCl₃) δ 7.29 (d, J = 8.8 Hz, 2H), 7.09 (m, 4H), 6.63 (d, J = 8.8 Hz, 2H), 4.74 (m, 1H), 2.42 (m, 1H), 2.31 (s, 3H), 1.88 (dd, J = 12.4, 5.1 Hz, 1H), 1.81 (s, 3H), 1.66 (m, 1H), 1.49 (s, 3H), 0.75 (s, 9H), 0.18 (s, 3H), 0.03 (s, 3H).

- 9. Crystal data for *cis*-10a. C₂₆H₃₆F₃NSi, *monoclinic*, space group *P*2₁/n, *a* = 13.8584(3) Å, *b* = 9.9621(2) Å, *c* = 17.7342 Å, β = 91.7284(9)°, *V*= 2447.25(8) Å³, *Z* = 4, *D_{calc}* = 1.215 g/cm³, *R* = 0.050, *R_w* = 0.064, GOF = 1.416.
- 10. Y. Yamamoto and N. Asao, Chem. Rev., 1993, 93, 2207.
- 11. We have reported [3+2] cycloaddition of acrylates with allylsilanes through formation of similar intermediates, *see*: ref 2f.
- For reviews of cycloaddition of allylsilanes, *see*: (a) C. E. Masse and J. S. Panek, *Chem. Rev.*, 1995, 95, 1293. (b) H.-J. Knölker, *J. Prakt. Chem.*, 1997, 339, 304.
- (a) J. S. Panek and F. Jain, *J. Org. Chem.*, 1994, **59**, 2674. (b) A. Stahl, E. Steckhan, and M. Nieger, *Tetrahedron Lett.*, 1994, **35**, 7371. (c) J. V. Schaus, N. Jain, and J. S. Panek, *Tetrahedron*, 2000, **56**, 10263. (d) T. Akiyama, M. Sugano, and H. Kagoshima, *Tetrahedron Lett.*, 2001, **42**, 3889.
- T. Uyehara, M. Yuuki, H. Masaki, M. Matsumoto, M. Ueno, and T. Sato, *Chem. Lett.*, 1995, 24, 789.
- 15. T. Akiyama, M. Suzuki, and H. Kagoshima, Heterocycles, 2000, 52, 529.