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Abstract – Aldol condensation of furan-3,4-dicarbaldehyde with pentanedial in 

acetic acid gave 6H-cyclohepta[c]furan-5,7-dicarbaldehyde in a good yield. Then, 

successive condensation of 6H-cyclohepta[c]furan-5,7-dicarbaldehyde with 

dimethyl 1,3-acetonedicarboxylate under azeotropic conditions gave a diester 

derivative of furan-fused methano[11]annulenone also in a good yield. The 

hydrolysis of the diester groups and subsequent decarboxylation provided a 

non-substituted furan-fused methano[11]annulenone. A similar sequence starting 

from 2,5-dimethylfuran-3,4-dicarbaldehyde gave its dimethyl derivative. 

Cycloaddition and protonation of these furan-fused methano[11]annulenones were 

also studied.

INTRODUCTION 

Various furan-fused annulenes,1 including benzofuran as a typical example of [6]annulenofuran,2 have 

been synthesized from the viewpoints of their aromatic character and synthetic utility. Sondheimer et al. 

synthesized two types of furan-fused dehydroannulenes, 1 and 2, and reported that 1 has atropic nature for 
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the annulene ring based on its 1H NMR spectral data,  

whereas 2 is a diatropic compound.3,4 They also  

indicated that the furan ring part of 1 could be used as 

a foothold for producing a carbon framework through 

the annulene-1,2-dicarbaldehyde in the synthesis of 

annulenoannulenes.3 Annuleno[c]furan, a type of 1, 

O

Me Me

O

Me Me
1 2  

also serves as a good enophile in Diels–Alder reactions. For example, Mitchell et al. reported that bridged 

[14]annuleno[c]furan 3 reacts various arynes to form cycloadducts, which were transformed to 

arene-annulated bridged [14]annulenes by subsequent deoxygenation.5 Meanwhile, such chemical 

behaviors of furan-fused annulenediones aroused our interest and we reported the synthesis and physical 

properties of 4.6 During the course of our continuing research on bridged annulenes,7 we have also been 

interested in annulenoannulenones, towards which an effective short-step synthesis of furan-fused 

annulenones as a synthetic intermediate is required. Herein we disclose a facile method for synthesizing 

such an annulenone, 5,11-methano-8H-[11]annuleno[c]furan-8-one (5).  
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RESULTS AND DISCUSSION 

The straightforward route to the title compound 5 is shown in Scheme 1. Furan-3,4-dicarbaldehyde (6) 

reacts with pentanedial in the presence of piperidine in acetic acid at 120 °C for 4 h to give 

6H-cyclohepta[c]furan-5,7-dicarbaldehyde (7) in 68% yield. The synthesis of 7 under similar reaction 

conditions in the presence of piperidine in refluxing acetic acid had been reported by Lepage et al.8 

However, the reported yield was as low as 22%. After extensive work on the reaction conditions, we 

found that the yield could be greatly improved by modifying the reaction conditions. It is worth noting 

that a short reaction time and using hydrated pentanedial instead of 2-methoxy-2,3,4-trihydropyrane are 

crucial for the improvement of the yield and that low substrate concentration and flash chromatography of 

the product are important to gain a constant yield. Having a large quantity of 7 available, we next 

examined the aldol condensation of 7 with dimethyl 1,3-acetonedicarboxylate to construct the carbon 

framework of the desired 5. Although yields of similar condensations between arene-1,2-dicarbaldehyde 

and dimethyl 1,3-acetonedicarboxylate are moderate to good,9 those of the 1,3-carbaldehyde are usually 

less than 50%.10 After several reported reaction conditions were applied for the condensation of 7 to result 

in disappointing yields of 8,11 it was found that under azeotropic conditions with a Dean–Stark apparatus,  
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Scheme 1. A synthetic route to 5. Reagents and conditions: a) aqueous pentanedial, piperidine (3 eq.), 
AcOH, reflux, 4 h. b) dimethyl 1,3-acetonedicarboxylate, piperidine (3 eq.), AcOH, toluene, reflux, 8 h. 
c) i: NaOH, EtOH, then 3N HCl, ii: Cu, 120 °C, DMF. 

 

 

 

 

 

 

 

 

Figure 1. ORTEP drawings of 8. 

 

8 was produced in 69% yield. The structure of 8 was confirmed by spectroscopic analysis and also by 

X-ray crystallographic analysis (Figure 1).12 The hydrolysis of 8 yielded the corresponding carboxylic 

acid, which was decarboxylated in the presence of copper powder at 120 °C in DMF to give the 

annulenone 5 as yellow oil in 73% yield. Thus, the facile and efficient construction of furan-fused 

[11]annulenone was accomplished. Using 2,5-dimethylfuran-3,4-dicarbaldehyde as a starting material, 

application of this protocol for synthesizing a derivative of 5 provided its 1,3-dimethyl derivative, 9, in 

20% total yield.11 
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The title compound 5 was isolated as slightly acid- and air-sensitive yellow oil. Protonation of 5 in an 

acidic medium at room temperature resulted in decomposition of 5, whereas the 

4,9-methano[11]annulenone (10) and furo[c]tropone 11 were stable under similar conditions. Although 

monitoring a solution of 5 in CF3CO2D at –15 °C by 1H NMR spectroscopy revealed the complete 

decomposition of 5 in 4 h, the transient protonated species 5D+ could be observed (Scheme 2). The 

olefinic protons of 5D+ resonate at a lower magnetic field by 1.10 ppm on average and the bridging 
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methylene protons resonate at a higher magnetic field by 0.61 ppm on average, compared with those in 

CDCl3 solution. At a glance, these shifts appear to indicate a deshielding effect on the olefinic protons 

and a shielding effect on the bridging methylene protons based on the diamagnetic ring current induced 

by the peripheral 14π-electorn aromatic system in the protonated species. Since the magnitude of these 

shifts is less than those observed in 10 upon protonation, the protonated species 5D+ is thought to be 

weakly diatropic. In other words, the contribution of the peripheral 14π-electorn aromatic system in the 

protonated species is very small. 
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Scheme 2. Chemical shifts (δppm) of 5 and 1a0 in CDCl3 and CF3CO2D and their differences. 

 

The furan ring of [11]annulenones, 5 and 8, serves as a 4π-component for the Diels–Alder reaction. On 

heating 5 and 8 with dimethyl acetylenedicarboxylate (DMAD) in toluene, cycloadducts 12 and 13 were 

obtained in 87% and 89% yields, respectively. The structure of 13 was determined by X-ray 

crystallography analysis (Figure 2) to reveal the syn-configuration between oxa- and methano-bridges in 

the product. The stereochemistry of 12 was deduced to have the same configuration as 13 by comparison 

of the spectroscopic data of 12 and 13. Thus, in these reactions, DMAD approaches the furan ring from 

the rear side of the methylene bridge. 
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Scheme 3. Cycloaddition reactions of 5 and 8.  
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In summary, the facile and efficient synthesis of furan-fused [11]annulenones has been accomplished by a 

four-step sequence starting from furan-dicarbaldehydes. The 11-membered ring of the protonated species 

of [11]annulenone 5 is weakly diatropic in nature. The furan ring of annulenones 5 and 8 indicated 

sufficient reactivity for DMAD. Such reactivity of these compounds gives the prospect of constructing a 

new framework towards annulenoannulenones by cycloaddition with suitable arynes. Further 

transformation of 5 along these lines is now in progress. 

 

 

Figure 2. ORTEP drawings of 13. 
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