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Abstract –A novel glycosyl donor, 4,6-di-O-acetyl-2,3-di-O-(4-methoxy-
benzyl)-α-D-glucopyranosy bromide (15) was efficiently prepared from 
D-glucose in 8 steps.  The first synthesis of 2’-O-(α-D-glucopyranosyl)biopterin 
(2) was achieved by treatment of the key precursor, N2-(N,N-dimethylamino- 
methylene)-1’-O-(4-methoxybenzyl)-3-[2-(4-nitrophenyl)ethyl]biopterin (6) with 
15 in the presence of silver triflate and tetramethylurea, followed by removal of 
the protecting groups.  

Some pterins having a hydroxyalkyl side-chain at C–6, a representative example being biopterin (1), have 
been found as glycosidic forms in certain prokaryotes; for example, 2’-O-(α-D-glucopyranosyl)biopterin 
(2)1-4 isolated from cyanobacteria and limipterin [2’-O-(2-acetamido-2-deoxy-β-D-glucopyranosyl)- 
biopterin] (3)5 isolated from a green sulfur photosynthetic bacterium.  Glycosides of other pterins such 
as ciliapterin (L-threo-biopterin),6 neopterin,7 and 6-hydroxymethylpterin8 were also isolated from 
cyanobacteria, anaerobic photosynthetic bacteria, and chemoautotrophic archaebacteria.  Although 
biopterin α-D-glucoside (2) is the most noteworthy among these pterin glycosides because of its abundant 
occurrence in various kinds of cyanobacteria, Anacystis nidulans,1 Oscillatoria sp.,2 Synechococcus sp.,3 
and Spirulina platensis,4 there has been no report for synthesis of 2 since its first discovery in 1958. 
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The physiological function of the parent pterins has been studied in detail: e.g., 1 exhibits enzyme 
cofactor activity in aromatic amino acid hydroxylation9 and nitric oxide synthesis10 as the form of its 
tetrahydro derivative.  By contrast, the functional roles of pterin glycosides have remained obscure, 
although some inhibitory activities against tyrosinase11 and photostabilization of photosynthetic 
pigments12 were reported for 2.  Despite a considerable interest from the viewpoint of their biological 
activities and functions as well as structural proof of hitherto reported natural products, attempts at 
preparation of pterin glycosides have scarcely been made so far, except for our synthetic studies on 
limipterin (3) and ciliapterin glycosides.13-15  In a previous paper,14 we developed an efficient synthetic 
protocol for the pterin 2’-O-glycosides by way of the key intermediate, N2-(N,N-dimethylamino-  
methylene)-1’-O-(4-methoxybenzyl)-3-[2-(4-nitrophenyl)ethyl]biopterin (6) derived from L-rhamnose (or 
D-xylose) via 4 and 5 (Scheme 1).  Glycosylation of 6 with tetra-O-benzoyl-α-D-glucopyranosyl 
bromide (7) in the presence of silver triflate afforded the 2’-O-(β-D-glucopyranosyl)biopterin derivative 
(8).  In the present study, we therefore have undertaken to prepare an efficient glycosyl donor leading 
the preponderant production of pterin α-glycosides.  We now describe the first synthesis of the 
representative, natural pterin glycoside, 2’-O-(α-D-glucopyranosyl)biopterin (2). 
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Scheme 1 

 
The stereoselective formation of the β-glycoside (8) from 6 was mainly caused by participation of the 
2-O-benzoyl group of the glycosyl donor (7) through the formation of an acyloxonium ion intermediate.16  
In order to avoid such a neighboring group participation, we sought to introduce an ether substituent for 
protection of 2-OH of a glycosyl donor.  Taking into consideration the available combination of 
protecting groups employed for the synthetic pathway, p-methoxybenzyl (PMB) and acetyl groups were 
respectively chosen for protection of 2,3-OH and 4,6-OH of the glycosyl moiety. 
Penta-O-acetyl-β-D-glucopyranose (9),17 derived from D-glucose, served as the starting material for 
preparation of methyl 4,6-di-O-acetyl-2,3-di-O-PMB-1-thio-β-D-glucopyranose (14) and its 
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α-D-glucopyranosyl bromide derivative (15), the potential glycosyl donors for the pterin α-glycosides 
(Scheme 2).  Treatment of 9 with thiourea and boron trifluoride etherate, followed by the action of 
methyl iodide and triethylamine, afforded the methyl 1-thio-β-D-glucopyranose derivative (10).18  
Methanolysis of 10 in the presence of sodium methoxide and the subsequent acetalization with 
2,2-dimethoxypropane in the presence of p-toluenesulfonic acid provided the 4,6-O-isopropylidene 
derivative (11). 19   Treatment of 11 with p-methoxybenzyl chloride and sodium hydride in DMF gave 
the 2,3-di-O-PMB derivative (12).  Hydrolysis of 12 in 70% acetic acid afforded methyl 2,3-di-O-PMB- 
1-thio-β-D-glucopyranoside (13), which was then treated with acetic anhydride and pyridine to give the 
desired 4,6-di-O-acetyl derivative (14).20  The transformation of the thioglycoside (14) to the 
D-glucopyranosyl bromide (15)21 was achieved by reaction with bromine in dichloromethane in the 
presence of 2,6-lutidine. 
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Scheme 2 
 
Glycosylation of the 1’-O-PMB-biopterin derivative (6) with glycosyl donors (14, 15) was examined 
under various conditions in the presence of activators (Scheme 3).  Treatment of 6 with the thioglycoside 
(14) in dichloromethane at room temperature in the presence of methyl triflate22 or 
N-iodosuccinimide-silver triflate23 as activators resulted in the formation of unidentified, decomposed 
compounds instead of the desired glycoside.24  While glycosylation of 6 with 4.0 mol equiv. of the 
glycosyl bromide (15) in dichloromethane in the presence of tetrabutylammonium bromide and 
N-ethyldiisopropylamine25 did not proceed, the same reaction in the presence of silver triflate (2.0 mol 
equiv.) and tetramethylurea (TMU)26 (1.0 mol equiv.) afforded an inseparable anomeric mixture (85:15) 
of the 2’-O-(α-D-glucopyranosyl)biopterin derivative (16a) and its β-anomer (16b) in 56% yield, along 
with the recovery of 6 (38%).  The α-anomeric structure of 16a was derived from its J1,2 value (3.5 Hz) 
of 1H-NMR, while the larger J1,2 value (8.0 Hz) confirmed the β-form of 16a. 
Separation of these isomers was achieved by removal of PMB groups and the subsequent acetylation.  
Thus, the mixture of 16a,b was treated with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) in 
dichloromethane, followed by acetylation with acetic anhydride in pyridine, afforded the 
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2’-O-(2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl)biopterin derivative (17a) in 43% (total yield from 6) 
and its β-anomer (17b) in 8%.27 
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Removal of the protecting groups of 17a was carried out according to the following steps: treatment with 
aqueous ammonia (to cleave the N,N-dimethylaminomethylene and acetyl groups) and then with DBU28 
(to cleave NPE group) furnished the desired 2’-O-(α-D-glucopyranosyl)biopterin (2) in 90% overall yield.  
The precise parameters obtained on 1H- and 13C-NMR spectra for 2 are listed in Table 1; the spectral data 
of the synthetic compound (2) were found to be essentially identical with those reported for natural 
product.4,11 
The present work thus demonstrates the first synthesis of biopterin α-D-glucoside (2) by use of the key 
intermediate 1’-O-PMB-biopterin derivative (6) and the novel glycosyl donor (15) to preferentially 
provide an α-glycoside.  Extension of this work including improvement of selectivity and yield for 
glycosylation as well as applications of these findings in synthesizing other natural pterin α-glycosides is 
in progress. 
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Table 1.  600 MHz 1H- and 151 MHz 13C-NMR Spectral Parameters [chemical shifts (δ) and coupling 
constants (Hz)] for biopterin α-D-glucoside (2) in D2O 
—————————————————————————————————————————————— 
 Pterin moiety  Glycosyl moiety 
   ———————————————   ————————————————————————— 
Com- H-7 H-1’ H-2’ H3-3’ H-1 H-2 H-3 H-4 H-5 H2-6 
pound (J1’,2’) (J2’,3’) (J1,2) (J2,3) (J3,4) (J4,5) (J5,6)  
—————————————————————————————————————————————— 
Synthetic a 8.79 4.83 4.07 1.30 5.00 3.41 3.32 3.22 2.40 3.43  
  (7.1) (6.1) (3.9) (10.0) (9.0) (10.0) (3.6)  
Natural b 8.79 4.82 4.06 1.29 4.99 3.40 3.30 3.21 2.38 c 
  (7.3) (5.9) (3.3) (9.2) (9.2) (9.2) (3.4)  
—————————————————————————————————————————————— 
 Pterin moiety  Glycosyl moiety  
   ———————————————————————————  —————————————— 
 C-2 C-4 C-4a C-6 C-7 C-8a C-1’ C-2’ C-3’ C-1 C-2 C-3 C-4 C-5 C-6 
—————————————————————————————————————————————— 
Synthetic d 155.7 165.4 128.3 152.2 149.6 155.2 75.6 75.5 14.9 95.8 71.6 73.4 69.5 72.5 60.5 
Natural e 155.7 165.4 128.6 152.8 150.1 155.4 76.0 76.0 15.2 96.3 72.1 73.9 70.1 72.9 61.2 
—————————————————————————————————————————————— 
a The solvent peak (δ 4.79) was used as an internal standard. 
b Ref. 4 (at 270 MHz).  The internal or external standard is not shown. 
c Not reported. 
d 1,4-Dioxane (δ 67.2) was used as an internal standard. 
e Ref. 11 (at 100 MHz).  The internal or external standard is not shown. 
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