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Abstract – This paper describes a reliable and facile synthesis of 6-azapurines 

(1,5-dimethyl-1H-imidazo[4,5-e][1,2,4]triazin-6(5H)-ones) by treatment of 

toxoflavins (7-azapteridines) with 10% aqueous sodium hydroxide at 5–25 °C 

along with a benzilic acid type rearrangement, followed by decarboxylation and 

oxidation by air. Furthermore, heating the 6-azapurines in 10% ethanolic sodium 

hydroxides afforded the corresponding 1,2,4-triazine-5,6(1H,4H)-diones to be 

caused by ring fission of the imidazole of 6-azapurines.

As the 7-azapteridine (pyrimido[5,4-e][1,2,4]triazines) antibiotics isolated from natural sources, 

toxoflavin (1), fervenulin (2) and reumycin (3) are known.1 We have developed several convenient 

synthetic procedures for the preparation of toxoflavin (1) and its 3- and/or 6-substituted derivatives,2–7 

and evaluated their potential anti-viral7 and antitumor activities8 and their ability as herbicides.9 However, 

we encountered difficulties when attempting to prepare the derivatives possessing a substituent of some 

kind at the 1-position of the toxoflavin skeleton (1). Because, we have previously reported that toxoflavin 

and its 3-substituted derivatives (1) readily undergo demethylation at the 1-position upon heating with 

some nucleophiles, e.g. DMF and dimethylacetamide, to give the corresponding 1-demethyltoxoflavin 

(reumycins 3) derivatives, while the nucleophiles themselves were methylated by the methyl group 

eliminated, and during the reactions novel radical species were observed (Scheme 1).10,11 On the other 

hand, the methylation of reumycin and its 3-substituted derivatives (3) under alkaline conditions with 

dimethyl sulfate or methyl iodide in DMF provided not toxoflavins (1) but fervenulins (2), whose methyl  
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Scheme 1. Reagents and conditions: i, MeI, K2CO3, DMF, reflux; ii, DMF, reflux; 
iii, 10% NaOH in EtOH, 60 °C or reflux.
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at the 8-position was stable.12–15 Heating 2 with alcoholic sodium hydroxide afforded the corresponding 

6-azapurines (5,7-dimethyl-5H-imidazo[4,5-e][1,2,4]triazin-6(7H)-ones) (4) along with the benzilic acid 

type rearrangement.16 We have been thinking that it is impossible to produce such 6-azapurines from 

toxoflavins (1) by the rearrangement up-to-date due to tendency to eliminate the methyl or alkyl by acid, 

nucleophilic solvent or heating. However, we found now that the methyl group at the 1-position of 

toxoflavins (1) is appreciably stable in alkali solution, not in acid solution, and the toxoflavins (1) 

transformed gradually to the 6-azapurines (1,5-dimethyl-1H-imidazo[4,5-e][1,2,4]triazin-6(5H)-ones) 

without demethylation. Recent years have seen dramatic development in the synthesis of modified purine 

derivatives and azapurines as therapeutic agents17–21 and antiviral agents.22–25 Herein, we wish to report a 

further unique synthetic approach to be 6-azapurines (5) by the transformation of toxoflavins 

(7-azapteridines) (1) along with a benzilic acid type rearrangement (Scheme 2). 

The desired 3-substituted toxoflavins (1a–l) were prepared by nitrosative cyclization of the appropriate 

6-(2-alkylidene- or 2-benzylidene-1-methylhydrazino)-3-methyluracils according to our previous 

reports.1-6,15 Treatment of the 3-substituted toxoflavins (1a–l) (2.5 mmol) with 10% aqueous sodium 

hydroxide (10 mL) under the conditions described in Table 1, followed by neutralization with 10% 

aqueous hydrochloric acid, and the solution was concentrated to dryness in vacuo. The solid thus 

obtained was recrystallized from a mixture of ethanol and water to afford the corresponding 6-azapurines 

(1,5-dimethyl-1H-imidazo[4,5-e][1,2,4]triazin-6(5H)-ones) (5a–l) as colorless needles in 40–90% yields. 

Furthermore, treatment of the 6-azapurines (5e, i, j, and k) (1.2 mmol) with 10% ethanolic sodium 

hydroxide (10 mL) under reflux for 6 h, followed by neutralization with glacial acetic acid to deposit the 
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H
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4-HO-C6H4

4-Me-C6H4

4-MeO-C6H4

3,4,5-(MeO)3-C6H2

4-Me2N-C6H4

Ph

4-Me-C6H4

4-MeO-C6H4

3,4,5-(MeO)3-C6H2

R

5–10 °C, 3 d

5–10 °C, 3 d

5–10 °C, 3 d

20–25 °C, 1 d

60–70 °C, 15 min

60–70 °C, 10 min

60–70 °C, 15 min

60–70 °C, 20 min

60–70 °C, 20 min

60–70 °C, 15 min

60–70 °C, 25 min

60–70 °C, 45 min

reflux, 6 h

reflux, 6 h

reflux, 6 h

reflux, 6 h

Table 1. Formation of 6-azapurines (5a–l) and 1,2,4-triazines (6a–d) by reaction of toxoflavins 
(7-azapteridines) (1a–l) with 10% NaOH aqueous solution or ethanolic solution.

a) All reactions were carried out in the atmosphere.
b) Products (5a–l) were recrystallized from aqueous EtOH and 6a–d were recrystallized from DMF.  

 

products as solid, which were recrystallized from DMF to afford the corresponding 3-substituted 

1-methyl-1,2,4-triazine-5,6(1H,4H)-diones (6a–d) as colorless powdery crystals in 80–90% yields. The 
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structures of compounds (5 and 6) were confirmed on the basis of elemental analysis, ir and 1H-NMR26 

pectra. 

 

We suggest that these 6-azapurines (5) are formed from toxoflavins (7-azapteridines) (1) by a benzilic 

acid type rearrangement in alkali solution, followed by decarboxylation and oxidation by air, as depicted 

in the following Scheme 3.  Moreover, heating the 6-azapurines (5) in alkali solution gave 

1,2,4-triazines (6) and methylurea to be caused by ring fission of the imidazole of 5. 
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Scheme 3. Plausible mechanism for formation of 1,2,4-triazines via 6-azapurines produced by 
transformation of toxoflavins (7-azapteridines).
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Thus, the reliable and facile synthetic method for 6-azapurines is noteworthy owing to expectation of 

biological activities. Further synthetic and mechanistic investigations and biological activities for 

6-azapurine nucleosides produced by the benzilic acid type rearrangement from 7-azapteridine 

nucleosides are in progress, and will be reported in detail shortly.  
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