HETEROCYCLES, Vol. 77, No. 2, 2009, pp. 849 - 854. © The Japan Institute of Heterocyclic Chemistry Received, 8th September, 2008, Accepted, 15th October, 2008, Published online, 16th October, 2008 DOI: 10.3987/COM-08-S(F)111

THE FACILE SYNTHESIS OF 6-AZAPURINES BY TRANSFORMATION OF TOXOFLAVINS (7-AZAPTERIDINES)

$\mathbf{Tomohisa\ Nagamatsu,}^{a,\ast}, \mathbf{Jun\ Ma,}^{a} \text{ and}\ \mathbf{Fumio\ Yoneda}^{b}}$

a *Department of Drug Discovery and Development, Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Tsushima-naka, Okayama 700-8530, Japan and* ^b *Fujimoto Pharmaceutical Co., Ltd, Matsubara, Osaka 580-0011, Japan; E-mail: nagamatsu@pheasant.pharm.okayama-u.ac.jp*

Abstract – This paper describes a reliable and facile synthesis of 6-azapurines (1,5-dimethyl-1*H*-imidazo[4,5-*e*][1,2,4]triazin-6(5*H*)-ones) by treatment of toxoflavins (7-azapteridines) with 10% aqueous sodium hydroxide at 5–25 °C along with a benzilic acid type rearrangement, followed by decarboxylation and oxidation by air. Furthermore, heating the **6**-azapurines in 10% ethanolic sodium hydroxides afforded the corresponding 1,2,4-triazine-5,6(1*H*,4*H*)-diones to be caused by ring fission of the imidazole of 6-azapurines.

As the 7-azapteridine (pyrimido[5,4-*e*][1,2,4]triazines) antibiotics isolated from natural sources, toxoflavin (1) , fervenulin (2) and reumycin (3) are known.¹ We have developed several convenient synthetic procedures for the preparation of toxoflavin (1) and its 3- and/or 6-substituted derivatives,²⁻⁷ and evaluated their potential anti-viral⁷ and antitumor activities⁸ and their ability as herbicides.⁹ However, we encountered difficulties when attempting to prepare the derivatives possessing a substituent of some kind at the 1-position of the toxoflavin skeleton (**1**). Because, we have previously reported that toxoflavin and its 3-substituted derivatives (**1**) readily undergo demethylation at the 1-position upon heating with some nucleophiles, *e.g*. DMF and dimethylacetamide, to give the corresponding 1-demethyltoxoflavin (reumycins **3**) derivatives, while the nucleophiles themselves were methylated by the methyl group eliminated, and during the reactions novel radical species were observed (Scheme 1).^{10,11} On the other hand, the methylation of reumycin and its 3-substituted derivatives (**3**) under alkaline conditions with dimethyl sulfate or methyl iodide in DMF provided not toxoflavins (**1**) but fervenulins (**2**), whose methyl

This paper is dedicated to Professor Emeritus Keiichiro Fukumoto on the occasion of his 75th birthday.

Scheme 1. *Reagents and conditions:* i, MeI, K₂CO₃, DMF, reflux; ii, DMF, reflux; iii, 10% NaOH in EtOH, 60 °C or reflux.

at the 8-position was stable. 12–15 Heating **2** with alcoholic sodium hydroxide afforded the corresponding 6-azapurines (5,7-dimethyl-5*H*-imidazo[4,5-*e*][1,2,4]triazin-6(7*H*)-ones) (**4**) along with the benzilic acid type rearrangement.¹⁶ We have been thinking that it is impossible to produce such 6-azapurines from toxoflavins (**1**) by the rearrangement up-to-date due to tendency to eliminate the methyl or alkyl by acid, nucleophilic solvent or heating. However, we found now that the methyl group at the 1-position of toxoflavins (**1**) is appreciably stable in alkali solution, not in acid solution, and the toxoflavins (**1**) transformed gradually to the 6-azapurines (1,5-dimethyl-1*H*-imidazo[4,5-*e*][1,2,4]triazin-6(5*H*)-ones) without demethylation. Recent years have seen dramatic development in the synthesis of modified purine derivatives and azapurines as therapeutic agents^{17–21} and antiviral agents.^{22–25} Herein, we wish to report a further unique synthetic approach to be 6-azapurines (**5**) by the transformation of toxoflavins (7-azapteridines) (**1**) along with a benzilic acid type rearrangement (Scheme 2).

The desired 3-substituted toxoflavins (**1a–l**) were prepared by nitrosative cyclization of the appropriate 6-(2-alkylidene- or 2-benzylidene-1-methylhydrazino)-3-methyluracils according to our previous reports. 1-6,15 Treatment of the 3-substituted toxoflavins (**1a–l**) (2.5 mmol) with 10% aqueous sodium hydroxide (10 mL) under the conditions described in Table 1, followed by neutralization with 10% aqueous hydrochloric acid, and the solution was concentrated to dryness *in vacuo*. The solid thus obtained was recrystallized from a mixture of ethanol and water to afford the corresponding 6-azapurines (1,5-dimethyl-1*H*-imidazo[4,5-*e*][1,2,4]triazin-6(5*H*)-ones) (**5a–l**) as colorless needles in 40–90% yields. Furthermore, treatment of the 6-azapurines (**5e**, **i**, **j**, and **k**) (1.2 mmol) with 10% ethanolic sodium hydroxide (10 mL) under reflux for 6 h, followed by neutralization with glacial acetic acid to deposit the

Scheme 2. *Reagents and conditions:* i, 10% aq NaOH, $5-25$ °C, $1-3$ d for R = H and alkyl, 60–70 °C, 10–45 min for R = aryl; ii, 10% NaOH in EtOH, reflux, 6 h.

Starting material	$\mathbf R$	Reaction conditions ^a	Product	$Mp (^{\circ}C)^b$	Yield $(\%)$
1a	H	5–10 \degree C, 3 d	5a	$192 - 194$	89
1 _b	Me	$5-10$ °C, 3 d	5b	$211 - 213$	68
1 _c	Et	$5-10$ °C, 3 d	5c	215-217	42
1 _d	Pr	$20-25$ °C, 1 d	5d	218-220	46
1e	Ph	60-70 °C, 15 min	5e	$211 - 213$	80
1 _f	$4-F-C6H4$	60–70 °C, 10 min	5f	$253 - 255$	63
1 _g	4 -Cl-C ₆ H ₄	60-70 °C, 15 min	5g	$262 - 264$	40
1 _h	$4-HO-C6H4$	60–70 °C, 20 min	5 _h	> 300	50
1 _i	4-Me- C_6H_4	60–70 °C, 20 min	5i	$233 - 235$	61
1j	4-MeO- C_6H_4	60–70 °C, 15 min	5j	235-237	76
1 _k	$3,4,5-(MeO)3-C6H2$	60–70 °C, 25 min	5k	$202 - 204$	82
11	$4-Me_2N-C_6H_4$	60–70 °C, 45 min	5 _l	$193 - 195$	47
5 _e	Ph	reflux, 6 h	6a	$243 - 245$	84
5i	4-Me- C_6H_4	reflux, 6 h	6 _b	246-248	87
5j	4-MeO- C_6H_4	reflux, 6 h	6c	256-258	83
5k	$3,4,5-(MeO)3-C6H2$	reflux, 6 h	6d	279-281	89

Table 1. Formation of 6-azapurines (**5a–l**) and 1,2,4-triazines (**6a–d**) by reaction of toxoflavins (7-azapteridines) (**1a–l**) with 10% NaOH aqueous solution or ethanolic solution.

a) All reactions were carried out in the atmosphere.

b) Products (**5a–l**) were recrystallized from aqueous EtOH and **6a–d** were recrystallized from DMF.

products as solid, which were recrystallized from DMF to afford the corresponding 3-substituted 1-methyl-1,2,4-triazine-5,6(1*H*,4*H*)-diones (**6a–d**) as colorless powdery crystals in 80–90% yields. The

structures of compounds (5 and 6) were confirmed on the basis of elemental analysis, ir and 1 H-NMR²⁶ pectra.

We suggest that these 6-azapurines (**5**) are formed from toxoflavins (7-azapteridines) (**1**) by a benzilic acid type rearrangement in alkali solution, followed by decarboxylation and oxidation by air, as depicted in the following Scheme 3. Moreover, heating the 6-azapurines (**5**) in alkali solution gave 1,2,4-triazines (**6**) and methylurea to be caused by ring fission of the imidazole of **5**.

1,2,4-triazines (**6a–d**)

Scheme 3. Plausible mechanism for formation of 1,2,4-triazines via 6-azapurines produced by transformation of toxoflavins (7-azapteridines).

Thus, the reliable and facile synthetic method for 6-azapurines is noteworthy owing to expectation of biological activities. Further synthetic and mechanistic investigations and biological activities for 6-azapurine nucleosides produced by the benzilic acid type rearrangement from 7-azapteridine nucleosides are in progress, and will be reported in detail shortly.

ACKNOWLEDGEMENTS

The authors are grateful to the SC-NMR Laboratory of Okayama University, Japan for the NMR experiments.

REFERENCES AND NOTES

- 1. T. Nagamatsu, *Recent Res. Devel. Org & Bioorg. Chem*., 2001, **4**, 97.
- 2. F. Yoneda and T. Nagamatsu, *Chem. Pharm. Bull.*, 1975, **23**, 2001.
- 3. F. Yoneda and T. Nagamatsu, *Synthesis,* 1975, 177.
- 4. F. Yoneda and T. Nagamatsu, *Chem. Pharm. Bull.*, 1975, **23**, 1885.
- 5. F. Yoneda, T. Nagamatsu, and K. Shinomura, *J. Chem. Soc., Perkin Trans. 1,* 1976, 713.
- 6. F. Yoneda, Y. Sakuma, T. Nagamatsu, and S. Mizumoto, *J. Chem. Soc., Perkin Trans. 1,* 1976, 2398.
- 7. T. Nagamatsu, H. Yamasaki, T. Hirota, M. Yamato, Y. Kido, M. Shibata, and F. Yoneda, *Chem. Pharm. Bull.*, 1993, **41**, 362.
- 8. T. Nagamatsu, Y. Yamagishi, and F. Yoneda, *Jpn. Kokai Tokkyo Koho*, JP 09 255,681/1997 (*Chem. Abstr.*, 1997, **127**, 336635w).
- 9. M. Ozasa, T. Amakusa, and T. Nagamatsu, *Jpn. Kokai Tokkyo Koho*, JP 10 175,807/1998 (*Chem. Abstr.*, 1998, **129**, 64309x).
- 10. F. Yoneda and T. Nagamatsu, *J. Am. Chem. Soc.,* 1973, **95**, 5735.
- 11. F. Yoneda, T. Nagamatsu, and M. Ichiba, *J. Heterocycl. Chem.,* 1974, **11**, 83.
- 12. F. Yoneda and T. Nagamatsu, *Tetrahedron Lett.*, 1973, 1577.
- 13. F. Yoneda and T. Nagamatsu, *J. Heterocycl. Chem*, 1974, **11**, 271.
- 14. F. Yoneda and T. Nagamatsu, *Bull. Chem. Soc. Jpn*, 1975, **48**, 2984.
- 15. T. Nagamatsu and H. Yamasaki, *J. Chem. Soc., Perkin Trans. 1,* 2001, 130.
- 16. F. Yoneda, M. Kawamura, T. Nagamatsu, K. Kuretani, A. Hoshi, and M. Iigo, *Heterocycles,* 1976, **4**, 1503.
- 17. H. E. Skipper, J. A. Montgomery, J. R. Thomson, and F. M. Schabel, Jr., *Cancer Res.*, 1959, **19**, 425; *Cancer Res.*, (supplement), 1959, **19**, part 2, 287.
- 18. A. Bendich, P. J. Russell, Jr., and J. J. Fox, *J. Am. Chem. Soc.*, 1954, **76**, 6073.
- 19. H. E. Skipper, R. K. Robins, J. R. Thomson, C. C. Cheng, R. W. Brockman, and F. M. Schabel, Jr., *Cancer Res.*, 1957, **17**, 579.
- 20. M. H. Norman, N. Chen, Z. Chen, C. Fotsch, C. Hale, N. Han, R. Hurt, T. Jenkins, J. Kincaid, L. Liu, Y. Lu, O. Moreno, V. J. Santora, J. D. Sonnenberg, and W. Karbon, *J. Med. Chem.*, 2000, **43**, 4288.
- 21. J. Yuan, M. Gulianello, S. De Lombaert, R. Brodbeck, A. Kieltyka, and K. J. Hodgetts, *Bioorg. Med. Chem. Lett.*, 2002, **12**, 2133.
- 22. M. L. Edwards, N. J. Prakash, and J. R. McCarthy, *Eur. Pat*. 334361/1986 (*Chem. Abstr*., 1990, **112**, 99145s).
- 23. E. Kojima, H, Yoshioka, H. Fukinbara, and K. Murakami, *Br. Pat*. 228479/1990 (*Chem. Abstr*., 1991, **114**, 102707a).
- 24. E. M. Peterson, J. Brownwell, and R. Vince, *J. Med. Chem*., 1992, **35**, 3991.
- 25. K. Kurabashi, J. Seki, H. Machida, Yosikawa, H. Hoshino, S. Saito, and M. Kichigawa, *Eur. Pat*. 416605/1991 (*Chem. Abstr*., 1991, **115**, 13665).
- 26. *¹* $H-MMR$ *spectral data in (DMSO-d₆)*. For **5a**: δ 3.23 (3H, s, 5-Me), 3.91 (3H, s, 1-Me), 8.33 (1H, s, 3-H). For **5b**: δ 2.45 (3H, s, 3-Me), 3.25 (3H, s, 5-Me), 3.87 (3H, s, 1-Me). For **5c**: δ 1.16 (3H, t, *J* $= 6.9$ Hz, 3-CH₂Me), 2.90 (2H, q, $J = 6.9$ Hz, 3-CH₂Me), 3.30 (3H, s, 5-Me), 3.99 (3H, s, 1-Me). For **5d**: δ 0.90 (3H, t, $J = 6.9$ Hz, 3-CH₂CH₂*Me*), 1.77 (2H, m, 3-CH₂*CH₂Me*), 2.94 (2H, t, $J = 6.9$ Hz, 3-*CH2*CH2Me), 3.33 (3H, s, 5-Me), 4.00 (3H, s, 1-Me). For **5e**: δ 3.25 (3H, s, 5-Me), 4.00 (3H, s, 1-Me), 7.52-7.58 (3H, m, Ph-*m,p*H), 8.19-8.28 (2H, m, Ph-*o*H). For **5f**: δ 3.35 (3H, s, 5-Me), 3.99 (3H, s, 1-Me), 7.39 (2H, dd, $J_{HH} = 8.4$, $J_{HF} = 8.7$ Hz, Ar-*m*H), 8.27 (2H, dd, $J_{HH} = 8.4$, $J_{HF} =$ 5.8 Hz, Ar-*o*H). For **5g**: δ 3.39 (3H, s, 5-Me), 3.98 (3H, s, 1-Me), 7.86 (2H, d, *J* = 8.7 Hz, Ar-*m*H), 8.22 (2H, d, *J* = 8.7 Hz, Ar-*o*H). For **5h**: δ 3.33 (3H, s, 5-Me), 3.96 (3H, s, 1-Me), 6.90 (2H, d, *J* = 8.7 Hz, Ar- mH), 8.07 (2H, d, $J = 8.7$ Hz, Ar- oH), 10.02 (1H, s, exchangeable with D₂O, Ar-OH). For **5i**: δ 2.38 (3H, s, Ar-Me), 3.36 (3H, s, 5-Me), 4.19 (3H, s, 1-Me), 7.32 (2H, d, *J* = 8.1 Hz, Ar-*m*H), 7.96 (2H, d, *J* = 8.1 Hz, Ar-*o*H). For **5j**: δ 3.33 (3H, s, 5-Me), 3.83 (3H, s, Ar-O*Me*), 3.96 (3H, s, 1-Me), 7.08 (2H, d, *J* = 8.7 Hz, Ar-*m*H), 8.16 (2H, d, *J* = 8.7 Hz, Ar-*o*H). For **5k**: δ 3.33 (3H, s, 5-Me), 3.76 (3H, s, 4'-OMe), 3.89 (6H, s, 3'- and 5'-OMe), 4.00 (3H, s, 1-Me), 7.54 (2H, s, 2'- and 6'-H). For **5l**: δ 3.01 (6H, s, Ar-N*Me2*), 3.32 (3H, s, 5-Me), 3.94 (3H, s, 1-Me), 6.79 (2H, d, *J* = 9.0 Hz, Ar-*m*H), 8.04 (2H, d, *J* = 9.0 Hz, Ar-*o*H). For **6a**: δ 3.48 (3H, s, 1-Me), 7.44–7.50 (3H, m, Ph-*m,p*H), 7.79–7.85 (2H, m, Ph-*oH*), 12.56 (1H, br s, exchangeable with D₂O, 4-NH). For 6b: δ 2.33 (3H, s, Ar-*Me*), 3.47 (3H, s, 1-Me), 7.27 (2H, d, *J* = 8.4 Hz, Ar-*m*H), 7.71 (2H, d, *J* = 8.4 Hz, Ph-*oH*), 12.42 (1H, br s, exchangeable with D₂O, 4-NH). For 6c: δ 3.47 (3H, s, 1-Me), 3.79 (3H, s, Ar-*OMe*), 7.01 (2H, d, *J* = 8.7 Hz, Ar-*m*H), 7.77 (2H, d, *J* = 8.7 Hz, Ar-*o*H), 12.47 (1H, br s, exchangeable with D₂O, 4-NH). For **6d**: δ 3.53 (3H, s, 1-Me), 3.72 (3H, s, 4'-OMe), 3.86 (6H, s, 3'-OMe and 5'-OMe 7.19 (2H, s, 2'- and 6'-H), 12.61 (1H, br s, exchangeable with D_2O , 4-NH).