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Abstract – In recent years, organic electro luminescent (EL) materials have 

received considerable attention due to their potential application in 

next-generation display devices with high brightness levels, wide color ranges, 

and wide viewing angles. Fluorescent 2-pyrone derivatives have been synthesized 

using a convenient method involving ketene dithioacetals, which emit 

fluorescence (red, green, and blue) in both solution (dichloromethane and 

ethanol) and solid state. The structure-activity relationships of various 2-pyrone 

derivatives have been clarified. 

1. INTRODUCTION 

Pigment chemistry such as that of mauveine pigments from the United Kingdom and indigo pigments 

from Germany has contributed to modern chemistry.1–4 Many heterocycles are examples of pigment 

compounds. The design of pigment compounds has become easier with the development of computational 

chemistry; however, not all compounds can be designed theoretically since practical and experimental 

pigment compounds possess large molecules.5,6 Since pigment chemistry obviously involves the π 

electron system, it is important that the chemical structure should include a functional group such as a 

chromophore or auxochrome. In particular, utilizing the properties of hetero atoms such as nitrogen, 

oxygen, and sulfur is critical in the design of pigments with various functionalities.2 
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Recently, the properties of pigment compounds have been used to create materials with new functions, 

including information storage, display of information, and energy conversion, for devices that act in 

response to light, heat, pressure, and electric fields.7–11 

4-(Dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran (DCM), a red laser dye, has the 

capability of enhancing luminous efficiency in electro luminescence (EL) and controlling the light 

spectrum by expressing the property of a small amount of dopant molecule that exhibits a high 

fluorescence quantum yield.12 From the synthesis of heterocycles using ketene dithioacetals, we found 

that fluorescent 2-pyrone derivatives had remarkably similar properties to those of DCM. These 

compounds developed our interest in the organic EL materials. Herein, we describe our studies on the 

synthesis of organic EL materials expected to be used as next-generation display devices that will replace 

the widely used liquid crystal displays.  

 

2. SYNTHESIS OF 4-METHYLSULFANYL-2-PYRONE DERIVATIVES  

Ketene dithioacetals are readily prepared by the condensation of active methylene compounds with 

carbon disulfide in the presence of a base, followed by alkylation with suitable alkylating reagents. They 

are very important electrophilic reagents used in the synthesis of heterocycles having various substituents.  
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Figure 1. Ketene dithioacetals and heterocycles synthesized from ketene dithioacetals 
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Since 1962, research on the use of this reagent in the synthesis of heterocyclic compounds has been 

greatly advanced by R. Gompper et al. in Germany and our group. As shown in Figure 1, these reactions 

proceed via an addition-elimination mechanism, which is initiated by a nucleophilic addition at the sp2 

sulfur-substituted carbon atom of ketene dithioacetal, followed by an elimination of the methylsulfanyl 

group to complete the substitution reaction. Further, the same substitution reaction occurs at the other 

methylsulfanyl group and produces various derivatives. Therefore, ketene dithioacetals enable the 

introduction of various functional groups. In particular, chromophores and auxochromes can be 

introduced into the pigment molecules.13–19 

On the basis of the initial research on ketene dithioacetals, it has been suggested that their skeletons are 

significant in the construction of dye molecules such as merocyanine dyes and the styryl series. We began 

our studies on the synthesis of materials for information storage with absorption in the near infrared and 

luminol type chemical luminescence reagents as high-sensitive analytical reagents of enzymes and 

reactive oxygen. This research finding triggered the development of fluorescence 2H-pyrone 

derivatives.20–26 
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The arrangement of suitable chromophores and auxochromes within the molecules both in the solution 

and solid states is necessary to confer fluorescent properties to a compound. In this respect, heterocycles 

synthesized using ketene dithioacetals have good substituents show fluorescence, due to ketene 

dithioacetals having strong electro-donating groups such as a methylsulfanyl group and strong 

electro-withdrawing groups such as cyano and ester groups. Therefore, many fluorescent materials are 

expected to be included under the category of heterocycles that we have previously synthesized. While in 

search of a solid fluorescent material, we found that 2H-pyrone derivatives exhibit strong fluorescence; 

this was first reported in 1977.27 A variety of pyrone derivatives were obtained via the reactions of 

various active methylene compounds with ketene dithioacetals; however, not all these derivatives were 

found to be fluorescent compounds. Our research suggests that the substitution of an aryl group without 

electro-withdrawing group such as a phenyl group at position 6 and not position 5 of the pyrone ring was 

important for fluorescence to occur. For example, 6-methyl- (9a), 6-(4-cyanophenyl)- (9o), 5-cyano- (16), 

and 6-pyrid-3-yl-2H-pyrone (9r) do not show fluorescence (Schemes 1 and 2). 
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In a similar manner to 9 and 14, methyl ester compounds (17a–m) were synthesized via the reactions 

between arylacetyl compounds and ketene dithioacetal (2b), which was prepared from methyl malonate 

(12) (Scheme 3). In addition, reactions of methyl ketones with sulfonyl ketene dithioacetal (2c, d) 

afforded 3-phenylsulfonyl derivatives (18a−d) (Scheme 4).28 
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The introduction of electro-withdrawing groups such as cyano, ester, and sulfonyl groups at position 3 of 

the pyrone ring was necessary for fluorescence to occur in 2-pyrone derivatives. The introduction of 

electron-rich aromatic compounds at position 6 of the pyrone ring increased the intensity of fluorescence. 

In the case of derivatives in which electron-poor compounds were introduced, such as pyridine or 

4-cyanophenyl derivative (9o), no fluorescence emission was observed.29 However, 

6-pyridyl-3-phenyl-4-sulfanyl-2-pyrone derivatives (21a–c), especially 3′,4′-dimethoxyphenyl derivative 

(21c), exhibit strong fluorescence (Scheme 5).30 These results suggest that derivatives with an 

electron-rich group and an electron-poor group at either position 3 or 6 of the pyrone ring, respectively, 

exhibit fluorescence. Compounds 21a–c were obtained via the reactions of phenylacetonitrile (19a–c) 

with the ketene dithioacetal (2e) in the presence of sodium hydroxide as a base in DMSO followed by 

neutralization with hydrochloric acid.  
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3. SYNTHESIS OF 2-PYRONE DERIVATIVES VIA THE NUCLEOPHILIC-SUBSTITUTION 

REACTION OF 4-METHYLSULFANYL-2-PYRONES  

When 2-pyrone derivatives are synthesized using ketene dithioacetals, they have a methylsulfanyl group 

at position 4 of the pyrone ring, which can be easily substituted by other functional groups. The reactions 

of 9a–e with methyl alkoxide afford 4-methoxy-2-pyrone derivatives (22a–e) (Scheme 6), and the 

reactions of ester compounds (17a–d) with methyl alkoxide produce 2-pyrone derivatives such as 

methoxyphenylcoumarin (23a)31 and methoxyparakotoin (23d)32 that are found in natural products, albeit 
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very weak intensities (Scheme 7). In order to avoid altering the ester group, the above reaction was 

performed and was then followed by conversion of the methylsulfanyl group to a sulfonyl group; this 

reaction was found to be effective (Scheme 8).33 
 

4-Amino-2-pyrone derivatives (26a–y, 27a–f) were synthesized by reacting methylsulfanyl and 

methylsulfenyl derivatives (9, 24) with amines (Schemes 9 and 10). Although only aliphatic amine 

derivatives are examined in this section, aromatic amine derivatives are of more interest from the 

viewpoint of fluorescence. These derivatives will be examined in the future. Amine derivatives are easily 

synthesized using an excess of amines in methanol; however, the reactions are slow. Without the presence 

of a solvent, 9 directly reacts with amines; however, this reaction is accompanied by the ring-opening 

reaction of the pyrone ring.34 The resulting amine derivatives, in which the sulfur atom at position 4 of the 

pyrone ring is replaced by an oxygen or nitrogen atom, show relatively strong fluorescence, and the 

emitting regions showed an approximately 30–50 nm blue shift. 
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Malonate derivatives (29a–h, 30a–e) are obtained in good yields via the reactions of malonates (28a, b) 

with 4-methylsulfany-2-pyrone derivatives (9, 14, 17) (Tables 1 and 2).35 Using various active methylene 

compounds (31), pyranopyridine derivatives (32a–h) (Table 3) and pyranopyrone derivative (33a–e) 

(Table 4) have also been synthesized.36,37 Among these compounds, 29h is found to emit more red light 

than DCM (630 nm), which is known as a red fluorescent compound. In addition, pyranopyrone 

derivatives (33a–e) are also obtained via the reaction between the active methylene compound and 31 

with no emission of fluorescence. In contrast, 32a–h exhibit fluorescence due to an intramolecular 

 

Table 1. Synthesis of dialkyl 3-cyano-6-phenyl-2-oxo-2H-pyran-4-ylmalonates 
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H-bonded structure resulting between the proton of the hydroxyl group and the carbonyl group, which 

leads to a molecular flatness arising from electron delocalization.35 

 

Table 2. Synthesis of dialkyl 3-methoxycarbonyl-6-phenyl-2-oxo-2H-pyran-4-ylmalonates 
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Table 3. Synthesis of 1H-pyrano[3,4-c]pyridines 
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Table 4. Synthesis of 1H-pyrano[3,4-c]pyridines 
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Coumarin derivatives, which are fused pyrone derivatives, are essential intramolecular excimer-forming 

fluorescence derivatization reagents required for high-sensitivity analysis. The fused pyrone derivatives 

(33a–e) obtained from ketene dithioacetal show weak or no fluorescence; however, the 

pyrano[4,3-b]quinolizine derivatives (36a–d) shown in Scheme 11 exhibit strong fluorescence. These 

derivatives are easily synthesized via the reactions of pyridine-2-acetonitriles (35a, b) (an active 

methylene compound) with 2-pyrone derivatives (9b, c, j) in the presence of potassium carbonate as the 

base in DMSO. The reaction of these compounds results in the formation of an intramolecular hydrogen 

bond as shown in 32a–h. However, although the pyrano[4,3-b]quinolizine derivative (37) does not 

possess a hydrogen bond, it exhibits fluorescence when synthesized via the reaction of 35b with 17c. 

Moreover, its decarboxylated derivative (38) is easily obtained by treating 37 with polyphosphoric acid 

(PPA). This derivative shows fluorescence although it does not contain an electro-withdrawing group. 

These results suggest that fluorescence is determined by the presence of a quinolizine ring. For similar 

reasons, 40a and b synthesized via the reaction of 2-aminopyridine (39) with 17a and c exhibited yellow 

fluorescence. Thus, stretching the conjugated structures of 2-pyrone derivatives affords near-infrared 

fluorescent dyes.38 
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3. FLUORESCENCE PROPERTY 

In 2-pyrone derivatives, the arrangement of the substitution groups in the pyrone ring is very important 

for fluorescence. In particular, aryl groups such as the phenyl group at position 6 have a significant effect 

on the fluorescent properties. Compounds possessing alkyl groups such as the methyl group at position 6 

exhibit no fluorescence. Figure 2 shows representative fluorescent 2H-pyrone derivatives. An aryl group 

such as the phenyl group is absolutely necessary at position 6 in order for it to emit fluorescence. Further, 

electro-donating groups such as an amino or alkoxy group on the aryl group influence the fluorescence 
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emission and bathochromic shifts. The dimethylamino derivative (9j) emits at 608 nm and the 

6-(4-dimethylamino)styryl derivative (14d) emits at 610 nm in dichloromethane; both these are red 

fluorescent compounds (Figure 3). Electro-withdrawing groups such as the cyano group are necessary at 

position 3 of the pyrone ring. Moreover, ester derivatives (17a, 18d) exhibit stronger fluorescence than 

cyano derivatives. Detailed structural analysis using X-ray crystallography has revealed that the 

intramolecular nonbonded S…O (SMe…CO2Me) distance is 2.735 Å, which is shorter than the sum of 
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the van der Waals distance for O and S (3.25 Å). This result suggests the presence of strong molecular 

stacking because of the planar nature of molecules, and this strong molecular stacking strongly influences 

the fluorescence properties. The same phenomenon is observed when compounds 32 and 33 are compared. 

Although compound 33 does not exhibit fluorescence in the solid state, compound 32, which has an 

intramolecular H-bonded structure due to the C=O----H-O-C system, exhibits strong fluorescence. The 

reaction of 4-methylsulfanyl-2-pyrone derivatives with various nucleophilic reagents, as shown in 

Scheme 6–11 and Table 1–4, produces various derivatives by displacing the methylsulfanyl group at 

position 4 of the pyrone ring. Amino derivatives such as compounds 26a and 26l show stronger 

fluorescence; however, they also exhibit hypsochromic shifts. The malonate derivative (29e) exhibits a 

slight bathochromic shift and stronger fluorescence. In particular, the 6-(4-dimethylamino)styryl 

derivative (29h) emits at 620 nm, which is close to the ideal wavelength for red-fluorescent compounds 

used in EL devices. The derivatives not substituted at positions 5 have much greater fluorescence than 

compounds with an electro-withdrawing or electro-donating group at that position. This fact suggests that 

derivatives bridged at positions 5 and 6 exhibit no fluorescence. Our findings show that an electron-rich 

aryl group is necessary at position 6 of the pyrone ring for the emission of fluorescence, and derivatives 

containing electron-poor heterocycles such as the pyridyl group exhibit no fluorescence. However, the 

introduction of a phenyl group at position 3 of the 6-pyridyl-2-pyrone ring in 21a affects the fluorescence 

expression. Consequently, in 2-pyrone derivatives, the introduction of various substituents at each 

position enables the control of the light-emission region and intensity, and also allows us to design 

pigments with various functionalities.39 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Comparison of fluorescent intensity of 2-pyrone derivatives 9j, 14d, 29e, 29h and DCM in 

dichloromethane. 
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4. CONCLUSION  

Display devices using organic EL materials are making rapid progress in terms of practical use. Studies 

on novel organic EL compounds are underway, with particular focus on aromatic compounds. 

Heterocycles, in which a carbon atom in the aromatic ring is replaced by an oxygen or nitrogen atom, 

have also received considered attention due to their diversity. In fact, many fluorescent heterocycles have 

been reported as diagnostic reagents or intramolecular excimer-forming fluorescence derivatization 

reagents for use in biological samples and pharmaceuticals. These findings will contribute to the 

development of organic EL materials. In addition, fluorescent heterocycles will be applicable not only to 

the synthesis of optimal organic EL materials but also to the synthesis of exotic materials that support the 

progress in technology, such as laser dyes and chemical luminous materials. We expect that ketene 

dithioacetals will be the best starting materials for the synthesis of various useful dyes. For almost 5 

decades, there has been research on these reagents; however, their application to the synthesis of 

merocyanine dyes and chemical luminescence reagents is only a recent development. Therefore, these 

reagents will be applied in the development of useful fluorescent dyes. 
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