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Abstract – Here, we report a synthesis of a differentially protected, open-chain 

C21–C40 fragment of azaspiracid-1, corresponding to the lower half EFGHI-ring 

domain. The synthesis features modular coupling of three advanced intermediates, 

aiming for diverted analogue synthesis. A new method for construction of E-ring 

moiety amenable to the diverted synthesis is also reported.

Azaspiracid-1 (AZA-1, 1) is a marine toxin responsible for azaspiracid poisoning prevailed at a coastal 

region in Europe since 1995 (Figure 1). The toxin was first isolated from contaminated mussels (Mytilus 

edulis) from Killary Harbor, Ireland, and characterized by a group led by Yasumoto and Satake in 1998,1 

and the structure was synthetically settled by a Nicolaou group in 2004.2 Ten AZA congeners have been 

determined thereafter,3 and the other congeners have been proposed.4 The structure of 1 is quite unique; 

1) a C6–C17 bisspiroketal fused to a C17–C20 tetrahydrofuran, and 2) an unusual C33–C40 azaspiro ring 

fused with C28–C40 2,9-dioxabicyclo[3.3.1]nonane. The lethality of 1 against mice was found to be 

highly potent (LD50 = 0.2 mg/kg),5 although the mechanism for the biological action of 1, however, still 

remains unsolved. Recently, AZAs have received increasing attention because of the wider geographical 

occurrence; AZAs are now detected also in brown crabs from coast of Norway and Sweden,6 and in 

several kinds of shellfishes from Portuguese coast.7 

In order to study the biological function of AZAs precisely, highly pure analogues and/or partial structure 

are required.2,8 We have been studying a synthesis of 1, and the synthesis of the lower half domain has 

been recently accomplished.9,10 In this letter, we report a second-generation synthesis of a differentially 

protected, open-chain fragment corresponding to the lower half of 1, amenable to diverted synthesis of 

various AZA analogues.11 In addition, a new synthetic approach toward E-ring moiety has been newly 

developed here. 
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Figure 1. Structure of azaspiracid-1 (AZA-1, 1) 

Our strategy, aiming for diverted synthesis of the lower half EFGHI-ring domain 2, is shown in Scheme 1. 

In this plan, differentially protected open-chain fragment 3 is a direct precursor for 2 and analogues. The 

fragment 3 would be synthesized from three advanced intermediates 4, 5, and 6, which may have 

structural variants as branching points.11 For a short-step and high-yield synthesis of natural product, 

construction of ring systems is generally performed prior to fragment assembly in a convergent way. In 

contrast, longer steps are generally required in a diverted synthesis, where fragment assembly is 

performed at an earlier stage in synthesis. The current diverted strategy, however, is expected to require 

39 steps for the longest linear route which is only 2 steps longer than our previous convergent synthesis 

(37 steps),9 as shown below. 

E

GO
O

O

N
H

H

O
H

F
HI

SPh
RO

O

EFGHI-ring domain 2

40

21

28

27

C21-C40 f ragment 3

O

O

O

40

28

TIPSO

MOM

SS

OPivOBOMBu3Sn

4

27 21

OPiv

OH

OBOMAZA-1 (1)

O

O

OBn

40

28

TIPSO

MOM

SS

OBn

H

5

6

ring system
construction

sequential
couplings

 
Scheme 1. Second-generation strategy amenable to analogue synthesis. Fragments 4–6 may have 

structural variants, and 3 is a direct precursor for 2 and analogues. 

Preparation of C21–C27 allylic stannane 4,12 corresponding to the E-ring moiety, is shown in Scheme 2. 

The experiment started with optically active aldehyde 7,13 which was reacted with vinylic lithium species 

8 prepared from 2-bromo-3-(trimethylsilyl)prop-1-ene14 and tert-BuLi. The reaction proceeded 

quantitatively to give alcohol 9 as a diastereomeric mixture (25R/25S = 2:1).15 After acidic removal of the 

TBS group, desired (25S)-9 was separated to give diol 10. The reaction was proceeded in 86% yield, and 
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desired diol 10 was isolated in 50% yield after a single chromatographic separation. Undesired 

(25R)-epi-10 can be also converted into 10 in 72% yield over 4-step reactions including 

oxidation–reduction sequence using DIBALH with 1:5 (25R/25S) diastereoselectivity (other data not 

shown). Primary hydroxy group of diol 10 was selectively protected as TBS ether and the remaining C25 

hydroxy group was protected by BOM group. The TBS ether was removed by CSA in MeOH, and 

generated C21 hydroxy group was again protected by Piv group to furnish 11 in 80% overall yield for 4 

steps. The allylic TMS group was then replaced with tri-n-butylstannyl group by (Bu3Sn)2O and TBAF,16 

giving rise to C21–C27 allylic stannane 4 in 47% yield.17 Here, main side reaction is protonolysis of the 

TMS group in 29% yield, which could not be suppressed under these reaction conditions. 
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Scheme 2. Synthesis of the C21–C27 fragment 4 

C28–C40 fragment aldehyde 14, corresponding to the FGHI-ring domain, was prepared from a known 

compound 12 generated by coupling of advanced intermediates 5 and 6 (Scheme 3).13 Thus, two Bn 

groups were quantitatively removed by LDBB18 at –78 °C, and isopropylidene formation for 1,3-diol 

protection provided alcohol 13 in 90% yield. Finally, oxidation of the hydroxy group with TPAP19 gave 

C28–C40 aldehyde 14, ready for coupling with allylic stannane 4. 
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Scheme 3. Synthesis of the C28–C40 fragment 14 
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Elaboration of the two fragments 4 and 14 to the C21–C40 open-chain fragment 3, corresponding to the 

lower half of AZA-1 (1), is shown in Scheme 4. First, the coupling was attempted with MgBr2·OEt2 

which had been employed in our synthetic study of a model compound.13 However, no reaction was 

observed and both coupling components were recovered intact. We therefore employed rather reactive 

BF3·OEt2 for this coupling reaction. Gratifyingly, we found that the reaction proceeded smoothly in 

CH2Cl2 at –78 °C in the presence of MS4A, giving rise to desired open-chain C21–C40 fragment 3 in 

49% yield as a diastereomeric mixture (6:5). The structure was fully confirmed by spectroscopic analysis 

including NMR.20 
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Scheme 4. Synthesis of differentially protected C21–C40 open-chain fragment 3 

 

A method for construction of the E-ring moiety, amenable to the present synthetic plan, was finally 

explored. Here, we decided to employ intramolecular etherification between C25 hydroxy group and C21 

α-chlorosulfide, inspired by a methodology reported by Hirama.21 The TMS group of 10 was removed by 

TBAF, as it is not required in this preliminary experiment. From diol 15, the construction of the E-ring 

was successfully performed without protecting C25 hydroxy group as follows. First, phenylthio group 

was regioselectively introduced to the C21 position to give 16 in 86% yield,22 which, in turn, was treated 

with NCS23 at 60 °C to provide α-chlorosulfide 17 as a diastereomeric mixture at the C21 position (ratio 

not determined). It should be noted that chlorination of the sulfide followed by migration of the chloride 

anion does not take place below 60 °C. Without purification, 17 was subjected to treatment with AgOTf21 

at –78 °C to furnish E-ring pyranoside 18 in 25% yield over 2 steps from 16. Diastereomer at C21 

position was not detected at all, indicating that this reaction is thermodynamically controlled process. 1H 

NMR analysis revealed that all substituents on the 6-membered ring are oriented equatorially in 18.24 The 

low yield in the last reaction is due to an instability of intermediary α-chlorosulfide 17, and improvement 

of this process is currently under study. 
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Scheme 5. Model study for construction of the E-ring 

In conclusion, we have successfully synthesized differentially protected open-chain fragment for the 

lower half of azaspiracid-1 (1). A new method for construction of the E-ring moiety has been also 

developed. In combination with the FGHI-ring formation method,9,13 the complete ring system is 

expected to be constructed from 3 in 15 steps which is only 2 steps longer (in total) than our previous 

route as shown in Scheme 6.9 Studies are currently underway to synthesize the EFGHI-ring domain 2 and 

the structural analogues from 3, and the result will be reported as a full account in due course. 
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