HETEROCYCLES, Vol. 78, No. 3, 2009, pp. 725 - 736. © The Japan Institute of Heterocyclic Chemistry Received, 5th October, 2008, Accepted, 17th November, 2008, Published online, 18th November, 2008 DOI: 10.3987/COM-08-11570

A FACILE APPROACH TO INDOLIZINES VIA TANDEM REACTION

Yan-Qing Ge, Jiong Jia, He Yang, Gui-Long Zhao, Fu-Xu Zhan, and Jianwu Wang*

School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, P. R. China. E-mail: jwwang@sdu.edu.cn

Abstract – Indolizines were synthesized by a novel tandem reaction at rt. The operation was simple and convenient. Various indolizine derivatives were obtained in good yields. The reaction mechanism was also proposed.

INTRODUCTION

Indolizines have attracted considerable attention from medicinal and organic chemists because of the interesting similarities and diversions in structure to indole.¹ Synthetic indolizines play important roles as calcium entry blockers,² potential central nervous system depressants,³ 5-HT₃ receptor antagonist,⁴ histamine H₃ receptor antagonists,⁵ cardiovascular agents,⁶ and PLA₂ inhibitors.⁷ They have also drawn much attention owing to their possible usage as dyes and chemosensors.⁸

Several condensation reactions, 1,3-dipolar cycloadditions, and 1,5-dipolar cyclizations are known to facilitate the formation of indolizines.⁹ The most general method is the formation of the five-member ring moiety in the indolizine framework.^{1b} Chichibabin-type cyclocondensation requires elevated temperatures and/or extended reaction time and, thus, may not be compatible with some functionality.¹⁰ Also, it provides low to moderate yields of the products.¹¹ Dipolar cycloaddition of pyridinium ylides with alkynes,¹² cyclopropenone¹³ or cyclopropenes¹⁴ is limited to the use of symmetric substrates, producing indolizines with two identical substituents at the pyrrole ring. Therefore new methods for the synthesis of indolizine that allow functional groups variation on indolizine nucleus are highly desirable.

Currently, transition metal-catalyzed C-N bond-forming reactions have become important methods for the preparation of indolizines in both academic and pharmaceutical research areas,¹⁵ most of which are realized by the formation of five-membered ring starting from six-membered pyridine derivatives. The formation of six-membered rings moiety in indolizine framework starting from five-membered ring system is less known.¹⁶ Our previous work¹⁷ prompted us to find a novel method to synthesize the indolizine derivatives. Herein an intramolecular condensation of α , β -unsaturated esters with

aldehydes was discovered and the indolizine derivatives were conveniently synthesized by a novel tandem reaction under very mild conditions. The reaction mechanism was also proposed.

RESULTS AND DISCUSSION

Pyrrole-2-carboxaldehydes **1a-j** were easily prepared as described in the literature.¹⁸ Vilsmeier-Haack reaction of pyrrole resulted in pyrrole-2-carboxaldehyde **1a**. The Vilsmeier-Haack intermediate **7** formed from pyrrole may be acylated under normal Friedel-Crafts reaction conditions or brominated giving the corresponding substituted pyrrole-2-carboxaldehydes **1b-j** in good yields. Pyrrole-2-carboxaldehydes **1a-j** reacted with ethyl γ - bromo- α , β -unsaturated esters in DMF and suitable base at rt and the unexpected products indolizines were obtained.

The effects of solvent and base on the yields of the reaction were evaluated using 4-acetyl-2-pyrrole carboxaldehyde **1d** and **2a** as a model substrate, and the results were summarized in Table 1.

First, aprotic solvents of different polarities such as dichloromethane, tetrahydrofuran, acetone, acetonitrile, and DMF, and protic solvents such as MeOH and EtOH were examined. It was noted that protic and strong polar aprotic solvents were significantly preferred over weak aprotic solvents. The reaction was fastest in MeOH, but it afforded transesterified indolizine byproduct. Second, the choice of base was found to have a significant impact on the reaction. Strong bases such as sodium ethoxide and potassium hydroxide gave no products. Neither did weak bases such as magnesium oxide, potassium bicarbonate, and triethylamine. Carbonate bases, however, were found to be effective. Highest yield was obtained with potassium carbonate. Third, the yield of **3g** increased when **1d** was the limiting reagent and the number of equivalents of **2a** was increased from one to two. However, an additional increase of **2a** to three had no beneficial effect on the yield. Eventually, the desired **3g** was obtained in good yield under conditions of **2** equivalents of **2a** and 2.2 equivalents of potassium carbonate in DMF at rt (entry 1, Table 1). Under these conditions, a variety of differently substituted pyrrole-2-carboxaldehydes **1** with ester, acetyl, benzoyl, and bromine functionalities underwent smooth reaction with **2** to afford indolizines **3** in good yields (Table 2).

The structure of **3g** was further confirmed by X-ray crystallographic analysis as shown in Figure 1.

Figure 1. Crystal Structure of 4f

$\begin{array}{c} O \\ H \\$										
1d 2a 3g										
Entry	Base (equiv)	Solvent	Time (h)	Isolated Yield (%)						
1	K ₂ CO ₃ (2.2)	DMF	8	79						
2	K ₂ CO ₃ (2.2)	MeCN	12	70						
3	K ₂ CO ₃ (2.2)	acetone	12	53						
4	K ₂ CO ₃ (2.2)	THF	72	65						
5	K ₂ CO ₃ (2.2)	DCM	72	0						
6	K ₂ CO ₃ (2.2)	МеОН	6	75						
7	K ₂ CO ₃ (2.2)	EtOH	7	73						
8	MgO(2.2)	DMF	72	0						
9	KHCO ₃ (2.2)	DMF	72	0						
10	triethylamine (2.2)	DMF	72	0						
11	Na ₂ CO ₃ (2.2)	DMF	5	55						
12	LiOH(2.2)	DMF	5	63						
13	NaOH(2.2)	DMF	0.5	33						
14	КОН	DMF	5	0						
15	NaOEt	EtOH	5	0						

Table 1. Solvent and Base Effects on the Tandem Reaction

On the basis of the above results and the literature,¹⁶ we proposed the reaction mechanism as follows: Firstly, an intermolecular S_N2 reaction between pyrrole-2-carboxaldehydes 1 and ethyl γ bromo-crotonates 2 occurs, and the intermediate 4 is formed. Subsequently, intermediate 4 is deprotonated by the existing base to form a γ -carbon anion of the ester, and in turn the electron pair transfers from the γ position to α position. Then the formed β , γ -unsaturated α -carbanion of ester cyclizes with the aldehyde group by intramolecular nucleophilic addition to afford intermediate 5 and then 6. The final products indolizines 3 can be obtained *in situ* from 6 by eliminating a water. The whole process is shown in Scheme 1.

In summary, we have developed a novel and general method for the synthesis of N-bridgehead indolizines with special substituent on them, especially with an ester group on the pyridine ring under very mild conditions. The operations are simple and convenient. Various indolizine derivatives were obtained using simple procedures in good yields. The reaction mechanism was also proposed.

$\begin{array}{c} R^{1} \\ R^{2} \\ R^{2} \\ R^{3} \\ R^{3} \\ R^{3} \\ R^{3} \\ OHC_{1} \\ R^{2} \\ R^{2} \\ R^{2} \\ R^{3} \\ R^{3}$								
Entry	\mathbb{R}^1	R^2	R ³	Product	Isolated Yield(%)			
1	Н	Н	Н	3a	78			
2	Н	Н	Me	3 b	76			
3	CO ₂ Me	Н	Н	3 c	75			
4	CO ₂ Me	Н	Me	3d	76			
5	Br	Br	Н	3 e	65			
6	Br	Br	Me	3f	62			
7	Ac	Н	Н	3g	79			
8	Ac	Н	Me	3h	76			
9	propionyl	Н	Н	3i	81			
10	propionyl	Н	Me	3j	78			
11	benzoyl	Н	Н	3k	85			
12	benzoyl	Н	Me	31	81			
13	4-nitrobenzoyl	Н	Н	3m	86			
14	4-nitrobenzoyl	Н	Me	3n	84			
15	4-methoxybenzoyl	Н	Н	30	80			
16	4-methoxybenzoyl	Н	Me	3p	76			
17	2-fluorobenzoyl	Н	Н	3 q	82			
18	2-fluorobenzoyl	Н	Me	3r	76			
19	2,4-dichlorobenzoyl	Н	Н	3s	79			
20	2,4-dichlorobenzoyl	Н	Me	3t	75			

Table 2. Synthesis of Indolizines Derivatives from Pyrroles

EXPERIMENTAL

All reagents and solvents were purchased from Sinopharm Chemical Reagent Co. Ltd and used without further purification unless otherwise noted. Starting materials were prepared according to literatures. Thin-layer chromatography (TLC) was conducted on silica gel 60 F254 plates (Merck KGaA). ¹H NMR spectra were recorded on a Bruker Avance 300 (300 MHz) spectrometer, using CDCl₃ or DMSO-*d*₆ as solvents and tetramethylsilane (TMS) as an internal standard. Melting points were determined on an XD-4 digital micro-melting point apparatus and are uncorrected. IR spectra were recorded with an IR spectrophotometer Avtar 370 FT-IR (Termo Nicolet). Elemental analyses were performed on a Trace DSQ mass spectrometer.

Scheme 1. Mechanism of the tandem reaction

General procedure for the synthesis and analytical data of 1a-j

Pyrrole-2-aldehydes **1a-j** were easily prepared according to the literature.¹⁸

1*H*-Pyrrole-2-carbaldehyde (1a)¹⁸

¹H NMR (300 MHz, CDCl₃): δ 10.36 (s, 1H), 7.18 (s, 1H), 7.01 (m, 1H), 6.36 (m, 1H). ¹³C NMR (75.4 Hz, CDCl₃): δ 179.5, 132.9, 126.9, 121.8, 111.4.

Methyl 5-formyl-1*H*-pyrrole-3-carboxylate (1b)¹⁸

¹H NMR (300 MHz, CDCl₃): δ 10.13 (s, 1H), 9.57 (d, 1H, J = 1.2 Hz), 7.71 (dd, 1H, J = 1.2 Hz, 3.0 Hz), 7.40 (dd, 1H, 2.4 Hz, 1.5 Hz), 3.86 (s, 3H). ¹³C NMR (75.4 Hz, CDCl₃): δ 180.0, 164.0, 133.1, 129.7, 121.3, 118.8, 51.6.

4,5-Dibromo-1*H*-pyrrole-2-carbaldehyde (1c)¹⁸

¹H NMR (300 MHz, CDCl₃): δ 10.28 (s, 1H), 9.35 (s, 1H), 6.97 (d, 1H, J = 2.4 Hz). ¹³C NMR (75.4 Hz, CDCl₃): δ 177.7, 133.1, 123.0, 113.0, 101.9.

4-Acetyl-1*H*-pyrrole-2-carbaldehyde (1d)¹⁸

¹H NMR (300 MHz, CDCl₃): δ 9.98 (s, 1H), 9.61 (s, 1H), 7.70 (s, 1H), 7.39 (t, 1H, J = 1.8 Hz), 2.48 (s, 3H). ¹³C NMR (75.4 MHz, CDCl₃): δ 193.0, 180.2, 133.4, 129.2, 128.0, 120.2, 27.4.

4-Propionyl-1*H*-pyrrole-2-carbaldehyde (1e)¹⁸

¹H NMR (300 MHz, CDCl₃): δ 10.02 (s, 1H), 9.60 (s, 1H), 7.72 (s, 1H), 7.39 (s, 1H), 2.84 (q, 2H, J = 7.4 Hz), 1.22 (t, 3H, J = 7.4 Hz). ¹³C NMR (75.4 MHz, CDCl₃): δ 196.4, 180.5, 133.3, 129.6, 127.3, 120.7, 32.9, 8.3.

4-Benzoyl-1*H*-pyrrole-2-carbaldehyde (1f)¹⁸

¹H NMR (300 MHz, CDCl₃): δ 10.78 (s, 1H), 9.62 (s, 1H), 7.87-7.48 (m, 7H). ¹³C NMR (75.4 MHz, CDCl₃): δ 190.3, 180.6, 138.7, 133.3, 132.3, 131.6, 129.0, 128.5, 126.4, 122.6.

4-(4-Nitrobenzoyl)-1*H*-pyrrole-2-carbaldehyde (1g)¹⁸

¹H NMR (300 MHz, DMSO-*d*₆): δ 12.99 (s, 1H), 9.65 (s, 1H), 8.37 (d, 2H, J = 8.4 Hz), 8.02 (d, 2H, J = 8.4 Hz), 7.82 (s, 1H), 7.49 (s, 1H). ¹³C NMR (75.4 MHz, DMSO-*d*₆): δ 188.2, 181.4, 149.6, 144.4, 134.4, 132.7, 130.3, 124.9, 124.2, 121.5.

4-(4-Methoxybenzoyl)-1*H*-pyrrole-2-carbaldehyde (1h)¹⁸

¹H NMR (300 MHz, CDCl₃): δ 10.21 (s, 1H), 9.63 (s, 1H), 7.89 (d, 2H, J = 8.7 Hz), 7.71 (d, 1H, J = 1.2 Hz), 7.45 (s, 1H), 6.99 (d, 2H, J = 8.7 Hz), 3.90 (s, 3H). ¹³C NMR (75.4 MHz, CDCl₃): δ 188.6, 180.1, 163.1, 131.4, 131.3, 130.4, 126.7, 121.9, 113.8, 55.5.

4-(2-Fluorobenzoyl)-1*H*-pyrrole-2-carbaldehyde (1i)¹⁸

¹H NMR (300 MHz, CDCl₃: δ 10.38 (s, 1H), 9.60 (d, 1H, J = 0.6 Hz), 7.67-7.42 (m, 4H), 7.29-7.15 (m, 2H). ¹³C NMR (75.4 MHz, CDCl₃): δ 186.7, 180.3, 161.3, 158.0, 133.4, 133.0, 132.9, 131.2, 130.3, 130.2, 127.8, 127.6, 127.5, 124.4, 124.3, 121.4, 116.6, 116.3.

4-(2,4-Dichlorobenzoyl)-1*H*-pyrrole-2-carbaldehyde (1j)¹⁸

¹H NMR (300 MHz, CDCl₃): δ 10.84 (s, 1H), 9.58 (d, 1H, J = 0.6 Hz), 7.56 (t, 1H, J = 1.5 Hz), 7.49 (d, 1H, J = 0.9 Hz), 7.37-7.33 (m, 3H). ¹³C NMR (75.4 MHz, CDCl₃): δ 188.0, 180.4, 137.4, 136.7, 133.7, 132.0, 131.7, 130.3, 129.7, 127.1, 126.8, 121.5.

General procedure for the synthesis and analytical data of 3a-3t

To a 100-mL round-bottomed flask were added **1a-j** (6.0 mmol), enoate **2a-b** (7.2 mmol), potassium carbonate (1.60 g, 12.5 mmol) and DMF (30 mL). The mixture was stirred at rt for 6-7 h and then filtered. The filtrate was concentrated by rotary evaporation. The crude products were purified by column chromatography.

Ethyl indolizine-7-carboxylate (3a)

Yellow oil. ¹H NMR (300 MHz, CDCl₃): δ 8.20 (s, 1H), 7.89 (d, 1H, J = 7.2 Hz), 7.42 (s, 1H), 7.05 (d, 1H, J = 7.2 Hz), 6.87 (s, 1H), 6.71 (s, 1H), 4.36 (q, 2H, J = 7.2 Hz), 1.40 (t, 3H, J = 7.2 Hz). ¹³C NMR (75.4 Hz, CDCl₃): δ 166.1, 131.5, 124.3, 123.1, 118.6, 115.3, 115.1, 109.4, 104.4, 60.8, 14.4. IR (KBr) v = 3103, 3061, 2981, 2936, 1706, 1629, 1520, 1478, 1260, 1199, 1130, 1092, 752 cm⁻¹. HRMS (EI): m/z Calcd. for: C₁₁H₁₂NO₂ [M+H]⁺: 190.2185; Found: 190.2188. Anal. Calcd for C₁₁H₁₁NO₂: C, 69.83; H, 5.86; N, 7.40. Found: C, 69.86; H, 5.84; N, 7.41.

Ethyl 6-methylindolizine-7-carboxylate (3b)

Yellow solid: mp 44-45 °C. ¹H NMR (300 MHz, CDCl₃): δ 8.18 (s, 1H), 7.69 (s, 1H), 7.32 (s, 1H), 6.81 (t, 1H, J = 3.0 Hz), 6.63 (d, 1H, J = 3.6 Hz), 4.33 (q, 2H, J = 7.2 Hz), 2.46 (s, 3H), 1.40 (t, 3H, J = 7.2 Hz).

¹³C NMR (75.4 MHz, CDCl₃): δ 166.7, 130.7, 124.0, 123.5, 119.5, 119.3, 117.1, 114.9, 114.0, 103.6, 60.5, 18.9, 14.4. IR (KBr) $v = cm^{-1}$. HRMS (EI): m/z Calcd. for: C₁₂H₁₄NO₂ [M+H]⁺: 204.2451; Found: 204.2455. Anal. Calcd for C₁₂H₁₃NO₂: C, 70.92; H, 6.45; N, 6.89. Found: C, 70.96; H, 6.46; N, 6.91.

7-Ethyl 2-methyl indolizine-2,7-dicarboxylate (3c)

Yellow solid: mp 105-107 °C. ¹H NMR (300 MHz, CDCl₃): δ 8.18 (s, 1H), 7.86 (t, 2H), 7.13-7.09 (m, 2H), 4.36 (q, 2H, J = 7.2 Hz), 3.89 (s, 3H), 1.39 (t, 3H, J = 7.2 Hz). ¹³C NMR (75.4 MHz, CDCl₃): δ 165.5, 164.9, 131.4, 124.7, 124.2, 121.3, 120.4, 117.9, 111.3, 105.6, 61.1, 51.7, 14.4. IR (KBr) v= 3137, 2954, 2896, 1711, 1701, 1635, 1495, 1266, 1215, 1165, 1085, 1011, 763, 556 cm⁻¹. HRMS(EI): m/z Calcd. for: C₁₃H₁₄NO₄ [M+H]⁺: 248.2546; Found: 248.2552. Anal. Calcd for C₁₃H₁₃NO₄: C, 63.15; H, 5.30; N, 5.67. Found: C, 63.18; H, 5.33; N, 5.69.

7-Ethyl 2-methyl 6-methylindolizine-2,7-dicarboxylate (3d)

Yellow solid: mp 128-129 °C. ¹H NMR (300 MHz, CDCl₃): 8.15 (s, 1H), 7.78 (d, 2H, J = 0.6 Hz), 7.65 (d, 2H, J = 0.9 Hz), 4.34 (q, 2H, J = 7.2 Hz), 3.89 (s, 3H), 2.45 (d, 2H, J = 0.9 Hz), 1.40 (t, 3H, J = 7.2 Hz). ¹³C NMR (75.4 MHz, CDCl₃): δ 166.1, 165.1, 130.7, 125.0, 123.6, 121.5, 120.8, 116.8, 105.0, 60.8, 51.6, 18.9, 14.3. IR (KBr) v= 3143, 3068, 2944, 1718, 1688, 1640, 1536, 1220, 1154, 1061, 1004, 776, 751 cm⁻¹. HRMS(EI): m/z Calcd. for: C₁₄H₁₆NO₄ [M+H]⁺: 262.2811; Found: 262.2813. Anal. Calcd for C₁₄H₁₅NO₄: C, 64.36; H, 5.79; N, 5.36. Found: C, 64.41; H, 5.77; N, 5.37.

Ethyl 2,3-dibromoindolizine-7-carboxylate (3e)

Yellow solid: mp 78-80 °C. ¹H NMR (300 MHz, CDCl₃): 8.10 (s, 1H), 7.93 (d, 1H, J = 7.5 Hz), 7.23 (d, 1H, J = 1.5, 7.5 Hz), 6.89 (s, 1H), 4.38 (q, 2H, J = 7.2 Hz), 1.41 (t, 3H, J = 7.2 Hz). ¹³C NMR (75.4 MHz, CDCl₃): δ 165.4, 132.4, 122.7, 121.5, 120.1, 110.8, 107.6, 106.8, 97.9, 61.2, 14.3. IR (KBr) v= 3120, 2988, 2907, 1711, 1628, 1517, 1463, 1246, 1145, 1018, 752, 744 cm⁻¹. HRMS(EI): m/z Calcd. for: C₁₁H₁₀ Br₂NO₂ [M+H]⁺: 348.0106; Found: 348.0107. Anal. Calcd for C₁₁H₉Br₂NO₂: C, 38.07; H, 2.61; N, 4.04. Found: C, 38.11; H, 2.62; N, 4.06.

Ethyl 2,3-dibromo-6-methylindolizine-7-carboxylate (3f)

Yellow solid: mp 99-101 °C. ¹H NMR (300 MHz, DMSO-*d*₆): δ 8.12 (s, 1H), 7.94 (s, 1H), 7.08 (s, 1H), 4.28 (q, 2H, J = 7.2 Hz), 2.46 (s, 3H), 1.33 (t, 3H, J = 7.2 Hz). ¹³C NMR (75.4 MHz, DMSO-*d*₆): δ 165.7, 131.6, 122.5, 121.2, 106.9, 106.7, 97.2, 61.1, 18.6, 14.6. IR (KBr) v= 3123, 2986, 2933, 2898, 1697, 1627, 1517, 1496, 1472, 1423, 1251, 1175, 1131, 1071, 1017, 964, 916, 776, 605cm⁻¹. HRMS(EI): m/z Calcd. for: C₁₂H₁₂Br₂NO₂ [M+H]⁺: 362.0372; Found: 362.0376. Anal. Calcd for C₁₂H₁₁Br₂NO₂: C, 39.92; H, 3.07; N, 3.88. Found: C, 39.95; H, 3.08; N,3.88.

Ethyl 2-acetylindolizine-7-carboxylate (3g)

Yellow solid: mp 105-106 °C. ¹H NMR (300 MHz, CDCl₃): δ 8.21 (s, 1H), 7.88 (t, 2H, J = 3.6 Hz), 7.15 (dd, 1H, J = 1.5 Hz, 7.5 Hz), 7.07 (s, 1H), 4.37 (q, 2H, J = 7.2 Hz), 2.58 (s, 3H), 1.40 (t, 3H, J = 7.2 Hz). ¹³C NMR (75.4 MHz, CDCl₃): δ 194.5, 165.4, 131.7, 129.8, 124.9, 124.4, 120.6, 117.1, 111.6, 104.6, 61.2, 27.7, 14.3. IR (KBr) v = 3129, 3110, 2996, 2977, 1711, 1666, 1629, 1488, 1454, 1219, 1175, 1093, 818, 750, 653 cm⁻¹. HRMS(EI): m/z Calcd. for: C₁₃H₁₄NO₃ [M+H]⁺: 232.2552; Found: 232.2550. Anal. Calcd for C₁₃H₁₃NO₃: C, 67.52; H, 5.67; N, 6.06. Found: C, 67.52; H, 5.66; N, 6.07.

Ethyl 2-acetyl-6-methylindolizine-7-carboxylate (3h)

Yellow solid: mp 126 °C. ¹H NMR (300 MHz, CDCl₃): δ 8.17 (s, 1H), 7.77 (s, 1H), 7.66 (s, 1H), 7.00 (s, 1H), 4.35 (q, 2H, J = 7.2 Hz), 2.56 (s, 3H), 2.46 (s, 3H), 1.40 (t, 3H, J = 7.2 Hz). ¹³C NMR (75.4 MHz, CDCl₃): δ 194.6, 166.0, 131.0, 129.5, 125.3, 123.8, 121.8, 121.7, 116.0, 104.1, 60.9, 27.7, 18.9, 14.3. IR (KBr) v = 3115, 2980, 2923, 1704, 1667, 1636, 1467, 1282, 1229, 1183, 1069, 853, 769, 661 cm⁻¹. HRMS(EI): m/z Calcd. for: C₁₄H₁₆NO₃ [M+H]⁺: 246.2817; Found: 246.2815. Anal. Calcd for C₁₄H₁₅NO₃: C, 68.56; H, 6.16; N, 5.71. Found: C, 68.59; H, 6.17; N, 5.71.

Ethyl 2-propionylindolizine-7-carboxylate (3i)

Yellow solid: mp 103-104 °C. ¹H NMR (300 MHz, CDCl₃): δ 8.20 (s, 1H), 7.87 (d, 2H, J = 6.9 Hz), 7.13 (dd, 1H, J = 1.5 Hz, 7.5 Hz), 7.08 (s, 1H), 4.38 (q, 2H, J = 7.2 Hz), 2.95 (q, 2H, J = 7.2 Hz), 1.40 (t, 3H, J = 7.2 Hz), 1.24 (t, 3H, J = 7.2 Hz). ¹³C NMR (75.4 MHz, CDCl₃): δ 197.6, 165.5, 131.7, 129.4, 124.9, 124.5, 120.5, 116.7, 111.6, 104.4, 61.2, 33.3, 14.4, 8.3. IR (KBr) v= 3140, 2985, 2970, 1715, 1673, 1630, 1488, 1259, 1160, 1093, 777, 758, 629 cm⁻¹. HRMS(EI): m/z Calcd. for: C₁₄H₁₆NO₃ [M+H]⁺: 246.2817; Found: 246.2817. Anal. Calcd for C₁₄H₁₅NO₃: C, 68.56; H, 6.16; N, 5.71. Found: C, 68.59; H, 6.17; N, 5.72.

Ethyl 6-methyl-2-propionylindolizine-7-carboxylate (3j)

Yellow solid: mp 111-112 °C. ¹H NMR (300 MHz, CDCl₃: 8.17 (s, 1H), 7.78 (d, 2H, J = 0.6 Hz), 7.66 (s, 1H), 7.01 (s, 1H), 4.35 (q, 2H, J = 7.2 Hz), 2.94 (q, 2H, J = 7.2 Hz), 2.46 (d, 2H, J = 0.9 Hz), 1.40 (t, 3H, J = 7.2 Hz), 1.23 (t, 3H, J = 7.2 Hz). ¹³C NMR (75.4 MHz, CDCl₃): δ 197.7, 166.1, 131.0, 129.1, 124.9, 125.3, 123.8, 121.7, 121.6, 115.7, 103.8, 60.9, 33.2, 30.9, 18.9, 14.3, 8.4. IR (KBr) v= 3114, 2971, 2937, 1701, 1664, 1479, 1264, 1163, 1082, 791 cm⁻¹. HRMS(EI): m/z Calcd. for: C₁₅H₁₈NO₃ [M+H]⁺: 260.3083; Found: 260.3088. Anal. Calcd for C₁₅H₁₇NO₃: C, 69.48; H, 6.61; N, 5.40. Found: C, 69.47; H, 6.63; N, 5.42.

Ethyl 2-benzoylindolizine-7-carboxylate (3k)

Yellow solid: mp 108-109 °C. ¹H NMR (300 MHz, CDCl₃): δ 8.23 (s, 1H), 7.94-7.88 (m, 4H), 7.62-7.48 (m, 3H), 7.17-7.13 (m, 2H), 4.38 (q, 2H, J = 7.2 Hz), 1.40 (t, 3H, J = 7.2 Hz). ¹³C NMR (75.4 MHz, CDCl₃): δ 191.4, 165.4, 139.0, 132.2, 131.6, 129.4, 128.5, 128.4, 124.8, 124.5, 120.7, 118.8, 111.7, 106.5, 61.2, 14.4. IR (KBr) v= 3056, 2984, 1714, 1633, 1485, 1400, 1274, 1233, 1119, 883, 748, 690 cm⁻¹.

HRMS(EI): m/z Calcd. for: C₁₈H₁₆NO₃ [M+H]⁺: 294.3245; Found: 294.3249. Anal. Calcd for C₁₈H₁₅NO₃: C, 73.71; H, 5.15; N, 4.78. Found: C, 73.75; H, 5.16; N, 4.77.

Ethyl 2-benzoyl-6-methylindolizine-7-carboxylate (3l)

Yellow solid: mp 142-143 °C. ¹H NMR (300 MHz, CDCl₃): δ 8.20 (s, 1H), 7.93-7.90 (t, 2H), 7.78 (s, 1H), 7.69 (s, 1H), 7.62-7.48 (m, 3H), 7.06 (s, 1H), 4.35 (q, 2H, J = 7.2 Hz), 2.47 (s, 3H), 1.40 (t, 3H, J = 7.2 Hz). ¹³C NMR (75.4 MHz, CDCl₃): δ 191.5, 166.0, 139.2, 132.1, 130.8, 129.4, 128.3, 128.2, 125.3, 123.8, 121.9, 121.8, 117.8, 105.9, 60.9, 18.9, 14.3. IR (KBr) v= 3118, 2978, 1707, 1629, 1478, 1395, 1230, 1194, 1119, 1062, 884, 724 cm⁻¹. HRMS(EI): m/z Calcd. for: C₁₉H₁₈NO₃ [M+H]⁺: 308.3511; Found: 308.3514. Anal. Calcd for C₁₉H₁₇NO₃: C, 74.25; H, 5.58; N, 4.56. Found: C, 74.29; H, 5.60; N, 4.55.

Ethyl 2-(4-nitrobenzoyl)indolizine-7-carboxylate (3m)

Yellow solid: mp 163-164 °C. ¹H NMR (300 MHz, CDCl₃): δ 8.38-8.35 (m, 2H), 8.24 (s, 1H), 8.07-8.04 (m, 2H), 7.93-7.88 (m, 2H), 7.22-7.19 (dd, 1H, J = 1.8, 7.2 Hz), 7.09 (s, 1H), 4.39 (q, 2H, J = 7.2 Hz), 1.41 (t, 3H, J = 7.2 Hz). ¹³C NMR (75.4 MHz, CDCl₃): δ 189.5, 165.2, 149.8, 144.1, 132.0, 130.1, 127.6, 125.0, 124.5, 123.6, 121.4, 118.8, 112.2, 106.2, 61.3, 14.3. IR (KBr) v= 3139, 3113, 2985, 1724, 1642, 1600, 1526, 1480, 1348, 1296, 1241, 1178, 1122, 848, 746cm⁻¹. HRMS(EI): m/z Calcd. for: C₁₈H₁₅N₂O₅ [M+H]⁺: 339.3221; Found: 339.3226. Anal. Calcd for C₁₈H₁₄N₂O₅: C, 63.90; H, 4.17; N, 8.28. Found: C, 63.96; H, 4.18; N, 8.26.

Ethyl 6-methyl-2-(4-nitrobenzoyl)indolizine-7-carboxylate (3n)

Yellow solid: mp 164-165 °C. ¹H NMR (300 MHz, CDCl₃): δ 8.37-8.35 (d, 2H, J = 8.1 Hz), 8.20 (s, 1H), 8.06-8.03 (d, 2H, J = 8.1 Hz), 7.78 (s, 1H), 7.71 (s, 1H), 7.01 (s, 1H), 4.36 (q, 2H, J = 7.2 Hz), 2.48 (s, 1H), 1.41 (t, 3H, J = 7.2 Hz). ¹³C NMR (75.4 MHz, CDCl₃): δ 189.5, 165.8, 149.7, 144.3, 131.2, 130.1, 127.2, 125.2, 123.8, 123.6, 122.6, 122.5, 117.7, 105.6, 61.0, 18.9, 14.3. IR (KBr) v= 3141, 3109, 2981, 2939, 2849, 1709, 1639, 1599, 1524, 1476, 1384, 1349, 1277, 1252, 1128, 1069, 846, 710 cm⁻¹. HRMS(EI): m/z Calcd. for: C₁₉H₁₇N₂O₅ [M+H]⁺: 353.3487; Found: 353.3488. Anal. Calcd for C₁₉H₁₆N₂O₅: C, 64.77; H, 4.58; N, 7.95. Found: C, 64.79; H, 4.57; N, 7.96.

Ethyl 2-(4-methoxybenzoyl)indolizine-7-carboxylate (30)

Yellow solid: mp 158-159 °C. ¹H NMR (300 MHz, CDCl₃): δ 8.23 (s, 1H), 7.99-7.94 (m, 2H), 7.91-7.87 (m, 2H), 7.17-7.14 (dd, 1H, J = 1.5, 7.2 Hz), 7.11 (s, 1H), 7.02-6.97 (m, 2H), 4.38 (q, 2H, J = 7.2 Hz), 3.90 (s, 3H), 1.40 (t, 3H, J = 7.2 Hz). ¹³C NMR (75.4 MHz, CDCl₃): δ 190.0, 165.5, 163.0, 131.8, 131.6, 131.4, 128.9, 124.8, 124.4, 120.5, 118.4, 113.6, 111.5, 106.4, 61.2, 55.5, 14.4. IR (KBr) v= 3135, 2984, 2937, 2839, 1712, 1627, 1602, 1575, 1490, 1278, 1248, 1233, 1175, 1120, 1028, 848, 759cm⁻¹. HRMS(EI): m/z Calcd. for: C₁₉H₁₈NO₄ [M+H]⁺: 324.3505; Found: 324.3510. Anal. Calcd for C₁₉H₁₇NO₄: C, 70.58; H, 5.30; N, 4.33. Found: C, 70.63; H, 5.31; N, 4.32.

Ethyl 2-(4-methoxybenzoyl)-6-methylindolizine-7-carboxylate (3p)

Yellow solid: mp 132-133 °C. ¹H NMR (300 MHz, CDCl₃): δ 8.20 (s, 1H), 7.97-7.94 (d, 2H, J = 7.8 Hz), 7.77 (s, 1H), 7.69 (s, 1H), 7.04 (s, 1H), 7.00-6.97 (d, 2H, J = 7.8 Hz), 4.35 (q, 2H, J = 7.2 Hz), 3.90 (s, 3H), 2.47 (s, 3H), 1.40 (t, 3H, J = 7.2 Hz). ¹³C NMR (75.4 MHz, CDCl₃): δ 190.1, 166.1, 163.0, 131.8, 130.7, 128.5, 125.2, 123.7, 121.7, 121.6, 117.4, 113.6, 105.8, 60.8, 55.5, 18.9, 14.4. IR (KBr) v= 3124, 2978, 2936, 2837, 1710, 1629, 1602, 1574, 1474, 1394, 1277, 1228, 1172, 1118, 1072, 1028, 888, 847, 777, 751, 705cm⁻¹. HRMS(EI): m/z Calcd. for: C₂₀H₂₀NO₄ [M+H]⁺: 338.3771; Found: 338.3775. Anal. Calcd for C₂₀H₁₉NO₄: C, 71.20; H, 5.68; N, 4.15. Found: C, 71.24; H, 5.66; N, 4.15.

Ethyl 2-(2-fluorobenzoyl)indolizine-7-carboxylate (3q)

Yellow solid: mp 102-103 °C. ¹H NMR (300 MHz, CDCl₃): δ 8.20 (s, 1H), 7.86-7.82(m, 2H), 7.64-7.49 (m, 2H), 7.29-7.13 (m, 3H), 7.08 (s, 1H), 4.37 (q, 2H, J = 7.2 Hz), 1.40 (t, 3H, J = 7.2 Hz). ¹³C NMR (75.4 MHz, CDCl₃): δ 188.3, 165.3, 161.5, 158.1, 132.8, 132.7, 131.8, 130.3, 129.3, 128.3, 128.1, 124.9, 124.6, 124.2, 124.1, 120.8, 118.9, 116.5, 116.3, 111.9, 106.0, 61.2, 14.3. IR (KBr) v= 3069, 2999, 2984, 2937, 1702, 1647, 1612, 1575, 1493, 1400, 1329, 1270, 1213, 1141, 1127, 1019, 886, 825, 754cm⁻¹. HRMS(EI): m/z Calcd. for: C₁₈H₁₅FNO₃ [M+H]⁺: 312.315; Found: 312.315. Anal. Calcd for C₁₈H₁₄FNO₃: C, 69.45; H, 4.53; N, 4.50. Found: C, 69.46; H, 4.53; N, 4.51.

Ethyl 2-(2-fluorobenzoyl)-6-methylindolizine-7-carboxylate (3r)

Yellow solid: mp 115-117 °C. 1H NMR (300 MHz, CDCl₃): 8.16 (s, 1H), 7.71-7.47 (m, 4H), 7.28-7.15 (m, 2H), 7.00 (s, 1H), 4.34 (q, 2H, J = 7.2 Hz), 2.45 (s, 3H), 1.40 (t, 3H, J = 7.2 Hz). ¹³C NMR (75.4 MHz, CDCl₃): δ 188.3, 165.9, 161.5, 158.1, 132.6, 132.5, 131.0, 130.3, 130.2, 128.9, 128.5, 128.2, 125.4, 124.1, 124.0, 123.7, 122.1, 122.0, 117.8, 116.5, 116.2, 105.4, 60.8, 18.8, 14.3. IR (KBr) v= 3141, 3065, 2975, 2929, 1704, 1697, 1656, 1637, 1614, 1521, 1475, 1449, 1232, 1124, 1064, 891, 745cm⁻¹. HRMS(EI): m/z Calcd. for: C₁₉H₁₇FNO₃ [M+H]⁺: 326.3416; Found: 326.3222. Anal. Calcd for C₁₉H₁₆FNO₃: C, 70.14; H, 4.96; N, 4.31. Found: C, 70.18; H, 4.98; N, 4.32.

Ethyl 2-(2,4-dichlorobenzoyl)indolizine-7-carboxylate (3s)

Yellow solid: mp 137-138 °C. ¹H NMR (300 MHz, CDCl₃): δ 8.19 (s, 1H), 7.84 (d, 1H, J = 7.2 Hz), 7.72 (s, 1H), 7.50 (s, 1H), 7.42 (d, 2H, J = 8.1 Hz), 7.35 (d, 2H, J = 8.1 Hz), 7.15 (d, 1H, J = 7.2 Hz), 7.00 (s, 1H), 4.37 (q, 2H, J = 7.2 Hz), 1.40 (t, 3H, J = 7.2 Hz). ¹³C NMR (75.4 MHz, CDCl₃): δ 189.3, 165.2, 137.7, 136.5, 132.2, 132.1, 130.2, 129.9, 128.6, 127.6, 125.0, 124.6, 121.1, 119.0, 112.1, 105.9, 61.3, 14.3. IR (KBr) v= 3123, 3085, 2989, 2902, 1705, 1648, 1630, 1586, 1550, 1479, 1390, 1293, 1232, 1127, 1102, 1021, 887, 834, 766, 751 cm⁻¹. HRMS(EI): m/z Calcd. for: C₁₈H₁₄Cl₂NO₃ [M+H]⁺: 363.2147; Found: 363.2149. Anal. Calcd for C₁₈H₁₃Cl₂NO₃: C, 59.69; H, 3.62; N, 3.87. Found: C, 59.72; H, 3.63; N, 3.88.

Ethyl 2-(2,4-dichlorobenzoyl)-6-methylindolizine-7-carboxylate (3t)

Yellow solid: mp 153-154 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.15 (s, 1H), 7.64-7.62 (m, 2H), 7.50 (d, 1H, J = 1.8 Hz), 7.43-7.33 (m, 2H), 6.92 (s, 1H), 4.35 (q, 2H, J = 7.2 Hz), 2.45 (s, 3H), 1.40 (t, 3H, J = 7.2 Hz), 2.45 (s, 3H), 3.45 (s, 3H),

Hz). ¹³C NMR (75.4 MHz, CDCl₃): δ 189.4, 165.9, 137.9, 136.4, 132.2, 131.3, 130.1, 129.8, 128.2, 126.8, 125.4, 123.8, 122.4, 122.3, 117.8, 105.4, 60.9, 18.8, 14.3. IR (KBr) v= 3143, 3065, 2983, 2902, 1708, 1656, 1637, 1588, 1521, 1475, 1383, 1340, 1284, 1231, 1125, 1103, 1064, 891, 857, 754cm⁻¹. HRMS(EI): m/z Calcd. for: C₁₉H₁₆Cl₂NO₃ [M+H]⁺: 377.2412; Found: 377.2408. Anal. Calcd for C₁₉H₁₅Cl₂NO₃: C, 60.65; H, 4.02; N, 3.72. Found: C, 60.67; H, 4.03; N, 3.72.

ACKNOWLEDGEMENTS

The authors thank the Shandong Natural Science Foundation (No. Y2008B40) and Shandong Excellent Young and Mid-aged Scientist Promotive Foundation (No. 2008BS04024) for financial support of this work. We also thank State Key Laboratory of Crystal Materials of Shandong University for crystal data.

REFERENCES

- For general reviews, see: E. T. Borrow and D. O. Holland, *Chem. Rev.*, 1948, 42, 638; T. Uchida and K. Matsumoto, *Synthesis*, 1976, 209; M. Shipman, *Sci. Synth.*, 2001, 10, 745; J. P. Michael, *Alkaloids.*, 2001, 55, 91; J. P. Michael, *Nat. Prod. Rep.*, 2002, 19, 742.
- J. Gubin, H. Vogelaer, H. Inion, C. Houben, J. Lucchetti, J. Mahaux, G. Rosseels, M. Peiren, M. Clinet, P. Polster, and P. Chatelain, *J. Med. Chem.*, 1993, 36, 1425; S. P. Gupta, A. N. Mathur, A. N. Nagappa, D. Kumar, and S. Kumaran, *Eur. J. Med. Chem.*, 2003, 38, 867.
- 3. W. B. Harrell and R. F. Doerge, J. Pharm. Sci., 1967, 56, 225.
- J. Bermudez, C. S. Fake, G. F. Joiner, K. A. Joiner, F. D. King, W. D. Miner, and G. J. Sanger, J. Med. Chem., 1990, 33, 1924.
- W. Chai, J. G. Breitenbucher, A. Kwok, X. Li, V. Wong, N. I. Carruthers, T. W. Lovenberg, C. Mazur, S. J. Wilson, F. U. Axe, and T. K. Jones, *Bioorg. Med. Chem. Lett.*, 2003, 13, 1767.
- 6. J. Gubin, M. Descamps, P. Chatelain, and D. Nisato, Eur. Pat. Appl. EP 235 111, 1987; L. L. Gundersen, C. Charnock, A. H. Negussie, F. Rise, and S. Teklu, *Eur. J. Pharm. Sci.*, 2007, **30**, 26.
- S. Hagishita, M. Yamada, K. Shirahase, T. Okada, Y. Murakami, Y. Ito, T. Matsuura, M. Wada, T. Kato, M. Ueno, Y. Chikazawa, K. Yamada, T. Ono, I. Teshirogi, and M. Ohtani, *J. Med. Chem.*, 1996, **39**, 3636.
- G. G. Surpateanu, M. Becuwe, N. C. Lungu, P. I. Dron, S. Fourmentin, D. Landy, and G. Surpateanu, J. Photochem. Photobiol. A., 2007, 185, 312; F. Delattre, P. Oisel, G. Surpateanu, F. Cazier, and P. Blach, Tetrahedron., 2005, 61, 3939; A. V. Retaru, L. D. Druta, T. Deser, and T. Mueller, Helv. Chim. Acta, 2005, 88, 1798; H. Sonnenschein, G. Henrich, V. Resch-Genger, and B. Schulz, Dyes Pigments., 2000, 46, 23; F. D. Saeva and H. R. Luss, J. Org. Chem., 1988, 53, 1804; C. H. Weidner, D. H. Wadsworth, S. L. Bender, and D. J. Beltman, J. Org. Chem., 1989, 54, 3660.

- A. R. Hardin and R. Sarpong, *Org. Lett.*, 2007, 9, 4547; S. Chuprakov and V. Gevorgyan, *Org. Lett.*, 2007, 9, 4463; I. V. Seregin, A. W. Schammel, and V. Gevorgyan, *Org. Lett.*, 2007, 9, 3433; I. Kim, J. Choi, H. K.Won, and G. H. Lee, *Tetrahedron Lett.*, 2007, 48, 6863; T. Przewloka, S. Chen, Z. Xia, H. Li, S. Zhang, D. Chimmanamada, E. Kostik, D. James, K. Koya, and L. Sun, *Tetrahedron Lett.*, 2007, 48, 5739; I. V. Seregin and V. Gevorgyan, *J. Am. Chem. Soc.*, 2006, 128, 12050; R. S. Tewarl and A. J. Bajpal, *Chem. Eng. Data.*, 1985, 30, 505.
- 10. A. R. Katritzky, K. C. Caster, O. Rubio, and O. Schwarz, J. Heterocycl. Chem., 1986, 23, 1315.
- 11. J. Zhou, Y. Hu, and H. Hu, Synthesis, 1999, 166.
- 12. A. R. Katritzky, G. Qui, B. Yang, and H. Y. He, J. Org. Chem., 1999, 64, 7618.
- D. H. Wadsworth, S. L. Bender, D. L. Smith, H. R. Luss and C. H. Weidner, J. Org. Chem., 1986, 51, 4639.
- 14. K. Matsumot and K. Uchida, J. Chem. Soc., Perkin Trans. 1, 1981, 73.
- For reviews, see: J. Tsuji, Palladium Reagents and Catalysis, John Wiley & Sons: Chichester, 2004;
 I. Nakamura and Y. Yamamoto, *Chem. Rev.*, 2004, **104**, 2127.
- R. Lazzaroni, R. Settambolo, A. Caiazzo, and L. J. Pontorno, J. Organomet. Chem., 2000, 601, 320;
 R. Settambolo, A. Caiazzo, and R. Lazzaroni, *Tetrahedron Lett.*, 2001, 42, 4045; R. Settambolo, S. Miniati, and R. Lazzaroni, *Synth. Commun.*, 2003, 33, 2953; M. Kim and E. Vedejs, J. Org. Chem., 2004, 69, 6945; D. Virieux, A. F. Guillouzic, and H. J. Cristau, *Tetrahedron*, 2006, 62, 3710.
- 17. J. W. Wang, J. Jia, D. J. Hou, H. M. Li, and J. Yin, Chin. J. Org. Chem., 2003, 23, 173.
- R. M. Silverstein, E. E. Ryskiewicz, and C. Willard, Org. Synth., 1956, 36, 74; P. E. Sonnet, J. Org. Chem., 1972, 37, 925; H. J. Anderson, C. E. Loader, and A. Foster, Can. J. Chem., 1980, 58, 2527.