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Abstract – The third-generation synthesis of (–)-heliannuol E has been 

accomplished employing mercuric triflate catalyzed arylene cyclization as the 

key step.

Heliannuol E (1),1 an irregular sesquiterpenoid exhibiting allelopathic activity, was isolated from the 

extracts of Helianthus annuus L. cv. SAH-222® by Macías and co-workers. This natural product 

possesses a characteristic 4-vinylchroman skeleton with two tertiary stereogenic centers at the C2 and C4 

positions. The absolute configurations were established to be 2R and 4R by the synthesis of Nishiyama 

and co-workers.2b Because of its fascinating structural features and allelopathic activity, three 

enantioselective2 and two racemic syntheses3 have been reported. One of the drawbacks in the previous 

enantioselective syntheses2 is the introduction of the vinyl moiety at the benzylic position; that is, the use 

of a stoichiometric amount of o-nitrophenylselenocyanate for the dehydration of the primary alcohol.4 In 

a recent publication, Nishizawa and co-workers demonstrated that the mercury(II) 

trifluoromethanesulfonate [Hg(OTf)2]5 catalyzed arylene cyclization6 proceeded cleanly to give the 

six-membered carbocycle fused to aryl and indole rings with a vinyl moiety at the benzylic position. We 

thought that this transformation could be used to construct the vinylchroman backbone of heliannuol E. 

Herein we report the synthesis of (–)-heliannuol E (1) using a Hg(OTf)2 catalyzed arylene cyclization as 
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the key step. Approaching the synthesis from a retrosynthetic perspective, we envisioned the following 

scheme: (–)-1 would be derived from the bicyclic ester (2R, 4R)-2 by a sequential Grignard reaction and 

demethylation. The ester 2 would be obtained by the C2-epimerization of (2S, 4R)-3a, which would be 

prepared from the optically active allyl alcohol (S)-5 with an acyl moiety containing a chiral auxiliary 

(Xc) by the Hg(OTf)2 catalyzed cyclization followed by methanolysis of the resulting 4a,b. We chose 

(S)-5 as a substrate based upon mechanistic consideration of the possible transition states in the key 

cyclization (shown in Scheme 3), in which the product with a cis relationship between the two 

substituents at the C2 and C4 positions would predominate. Since the C2 stereogenic center can be 

epimerized, the major diastereoisomer would be converted to (–)-1. The allyl alcohol 5 could be derived 

from 4-methoxy-3-methylphenol (6). (Scheme 1) 
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Scheme 1. Retrosynthetic Analysis 

 

As the chiral auxiliary for the creation of the tertiary stereogenic center at the future C2 (chroman 

numbering), we chose the Evans’ bromoacetyloxazolidinone 7.7 The phenol 68 was reacted with 7 in the 

presence of NaH to produce the ether 8 which was treated with the allylic iodide 99 and LiHMDS as a 

base10,11 to give 10 with high diastereoselectivity (>99 %de). After desilylation, the allyl alcohol 11, the 

substrate for the key conversion, was treated with 2 mol% of Hg(OTf)2 in toluene (0.05 M solution) at 

90 °C for 2 h. The resulting mixture of cyclized products, which was immediately exposed to a methanol 

solution containing 4-DMAP at rt for 2 h,11 provided the expected 3 (cis:trans=3:1) and the regioisomer 

12 (dr=10:1) in 43% and 8% yield, respectively. Both could be separated by silica gel column 

chromatography and were obtained as an inseparable mixture of diastereoisomers. Fortunately, 3 was 

obtained as a crystalline solid and recrystallization from hexane produced 3a in 31% yield (from 11), the 

X-ray crystallographic analysis12 of which showed that the structure of the major diastereoisomer was (2S, 

4R)-3a, as we had predicted. (Scheme 2) 
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Scheme 2. Preparation of (2S, 4R)-Methyl 6-methoxy-7-methyl-4-vinylchroman-2-carboxylate (3a). 

 

The diastereoselectivity can be explained by comparing the possible π-complex6 transition states T1 and 

T2. In transition state T2, the steric repulsion between the acyl moiety (COXc) and the complexed mercury 

can be observed, and the sterically less demanding transition state T1 should predominate with cis-4a 

being generated as the major product. (Scheme 3) 

Next we examined the epimerization at C2 of 3a. Treatment of 3a with DBU at 90 °C for 1h13 provided 

the recovered 3a and two new products, the epimerized 2 and the exocyclic alkene 13,14 in a ratio of 

1:0.7:0.9 in 79% yield. Cis-3a was separated by preparative HPLC;15a however, 2 and 13 were inseparable. 

A mixture of 2 and 13 was reacted with MeMgBr in THF and still gave an inseparable mixture of the 

tertiary alcohols 14 and 15 (ca. 1:1) quantitatively. Final demethylation3b,16 was realized by sequential 

treatment with tris(pentafluorophenyl)borane/triethylsilane and TBAF to give a separable15b mixture of 

(–)-heliannuol E 1 and the reduced product 16 (dr=4:1, inseparable)17,18 in 33% and 10% yield, 

respectively, along with unidentified products which would be generated from 15. The spectral properties 

and the optical rotation {[α]D –88.5 (c 0.45, CHCl3); lit.2b [α]D –77.1 (c 0.10, CHCl3), lit.2c [α]D –76.5 (c 

0.08, CHCl3)} of the synthetic 1 were identical with those of the natural product. (Scheme 4) 
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Scheme 3. Transition States for the Arylene Cyclization. 
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Scheme 4. Synthesis of (–)-Heliannuol E (1). 

 

In summary, we have completed the enantioselective total synthesis of (–)-heliannuol E (1), which is the 

third-generation synthesis from our group, using a Hg(OTf)2 catalyzed arylene cyclization as the key step. 
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This is the first example of a diastereoselective Nishizawa cyclization for the synthesis of a chroman 

derivative. The synthetic route developed here can be applied to the synthesis of other heliannane 

sesquiterpenoids. 
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