HETEROCYCLES, Vol. 79, 2009, pp. 427 - 432. © The Japan Institute of Heterocyclic Chemistry Received, 10th October, 2008, Accepted, 5th December, 2008, Published online, 11th December, 2008. DOI: 10.3987/COM-08-S(D)70

SYNTHETIC STUDIES ON THE FLUORINATED ANALOGS FOR THE PUTATIVE OXINDOLE-TYPE METABOLITES OF 5-HALOTRYPTAMINES

Tomoya Fujiwara, Takayuki Seki, Masaru Miura, and Yoshio Takeuchi*

Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan takeuchi@pha.u-toyama.ac.jp

Abstract – The suitably protected precursors for direct fluorination, N^b -Boc di-protected 5-fluorotryptamine (13), N^b -acetyl- N^b -Boc protected 5-halotryptamines (15a–c), were treated with SelectfluorTM in MeCN/water in the presence of NaHCO₃ to give the corresponding 3-fluorooxindoles **14** and **16a–c** in good yields. Removal of the protecting groups of **14** and **16a**–**c** produced (3,5-difluorooxindol-3-yl)ethylamine (**8**) and *N*-acetyl-(3-fluoro-5-halooxindol-3-yl)ethylamines (**9a**–**c**) in excellent yields, respectively. These compounds are potentially non-epimerizable analogs for the putative metabolites of 5-fluorotryptamine (6) and N^b -acetyl-5-halotryptamines (**7a**–**c**).

INTRODUCTION

The 3-fluorooxindole derivatives **1** have received much attention as a synthetic target for development of novel medicinal agents since BMS-204532 (Maxipost, **2**) ¹ was discovered as an effective calcium-dependent potassium channel opener. Fluorinated biomolecules and medicinals can be recognized by enzymes and receptors as well as the nonfluorinated molecules because the replacement of a hydrogen with a fluorine brings about the minimal steric alterations of the molecules. ² It should be noted that the fluorinated derivatives can be non-epimerizable analogs when the labile proton at the stereogenic center is replaced by a fluorine. Indeed we previously reported the synthesis of $3'$ -fluorothalidomide as a non-epimerizable analog of thalidomide.³ Since the stereoelectronic properties of fluorine are also similar to those of hydroxy group, isosteric analogs of prototype molecules can be

[†] Dedicated to the memory of Dr. John Daly who made many lasting contributions to the wide area of chemistry.

obtained by substituting the hydroxy group with fluorine. 2 Moreover, such substitution will prevent further metabolization which would be subjected otherwise. 2 Thus 3-fluorooxindole derivatives **1** can be employed as mimics for both oxindoles **3** and 3-hydroxyoxindoles **4**, which are often found in natural products and as metabolites of some indole-containing biomolecules. As a part of our studies on the design, synthesis, and biological evaluation of chiral fluorinated bioorganic molecules,^{3,4} we synthesized 3-(3-fluorooxindol-3-yl)-L-alanine (**5**). $(5).^5$ Here we report the synthesis of (3,5-difluorooxindol-3-yl)ethylamine (**8**) and *N*-acetyl-(3,5-difluorooxindol-3-yl)ethylamine (**9a**–**c**) as potential analogs for the putative oxindole-type metabolites of 5-fluorotryptamine (**6**) and *N*^b-acetyl-5-halotryptamines (7a–c), which have agonistic activities toward serotonin 5-HT₃ receptor and melatonin MT_1 and MT_2 receptors, respectively.⁶ It should be noted that oxindoles **3** may epimerize under physiological conditions.⁷ Therefore, compounds **8** and **9a**–**c** can be the non-epimerizable analogs, which are effective tools for investigating the relationship between the biological behavior and the stereochemistry of the metabolites.

Figure 1. Structures of compounds **1**–**9**.

RESULTS AND DISCUSSION

We previously reported the direct fluorination using SelectfluorTM for preparation of the tryptophan isostere **5**. In this procedure we found that use of the precursor with di-protected α -amino moiety is essential for successful fluorination. For synthesis of the fluorooxindole-containing ethylamine **8**, we employed N^b , N^b -di-(*tert*-butoxycarbonyl)tryptamine (10) as a model compound in order to examine the optimum reaction conditions for the fluorination. The suitably protected precursor **10**, prepared from tryptamine according to the literature,^{5,8} was treated with 3 equiv of SelectfluorTM in MeCN/water (1/1) at rt for $16-24$ h^9 to produce the corresponding 3-fluorooxindole 11. However, the yield of 11 was quite low owing to the formation of mono-deprotected product **12** (Table 1, entry 1). This was presumably due to the rather acidic conditions employed for the reaction. We then attempted the fluorination in the presence of a base.¹⁰ Fluorination of 10 in the presence of 3 equiv of NaHCO₃ gave 3-fluorooxindole 11 in 58% yield without formation of 12 (entry 2). Use of increased or decreased amount of NaHCO₃ did not give any better results (entries 3–6). Excess amount of SelectfluorTM led to increase of the yield of 11 (entry 7). The best result was obtained when the fluorination was carried out using 4 equiv of SelectfluorTM and 4 equiv of NaHCO₃ to afford 11 in 73% yield (entry 7).

	CI. N(Boc) ₂ 10	N+-F $2BF_4^-$ (Selectfluor TM) NaHCO ₃ $MeCN/H2O = 1/1$ rt, 16 ~ 24 h	N(Boc) ₂ Ω ┿ H 11	NHBoc Ω 12
Entry	$Selectluor^{TM}$ (equiv)	NaHCO ₃ (equiv)	Yield of 11 $(\%)^a$	Yield of 12 $(\%)^a$
1	3	$\overline{0}$	20	51
$\overline{2}$	3	3	58	$\overline{0}$
3	3	0.5	43	29
$\overline{4}$	3	1.5	56	11
5	3	4.5	47	$\boldsymbol{0}$
6	3	6	38	$\boldsymbol{0}$
7	4	4	73	$\boldsymbol{0}$

Table 1. Fluorination of N^b , N^b -di-(*tert*-butoxycarbonyl)tryptamine (10)

^a Isolated yield.

The 5-fluoro analog 13 was prepared from 6 according to the literature.^{5,8} We employed above reaction conditions for direct fluorination of **13** and the corresponding 3-fluorooxindole **14** was successfully obtained in 73% yield (Scheme 1).11 Treatment of **14** with HBr/AcOH smoothly produced the deprotected ethylamine **8** as HBr salt in excellent yield.¹²

Scheme 1. Synthesis of (3,5-difluorooxindol-3-yl)ethylamine (**8**)

We next attempted synthesis of N^b -acetyl protected fluorooxindole-containing ethylamine **9a–c**. Although direct fluorination of **7b** with SelectfluorTM gave **9b**, the yield was unsatisfactory owing to concomitant formation of side products.¹³ We then focused on the N^b -di-protected structure. The precursors **15a–c**, prepared in a similar manner to the synthesis of 13, were treated with SelectfluorTM in the presence of NaHCO₃ to give the corresponding 3-fluorooxindoles **16a–c** in good yields (Scheme 2). Removal of the Boc groups of **16a**–**c** with HBr/AcOH successfully produced the *N*^b -acetyl protected fluorooxindole-containing ethylamine **9a**–**c** in excellent yields.¹⁴

Preparation of the individual enantiomers of **8** and **9a**–**c** is in progress for investigation of the relationship between the biological behavior and the stereochemistry.

Scheme 2. Synthesis of *N*-acetyl-(3-fluoro-5-halooxindol-3-yl)ethylamines (**9a**–**c**)

In summary, we achieved the synthesis of fluorooxindole-containing ethylamine **8** as a metabolic analog of 6 by fluorination of the N^b -di-protected tryptamine derivative 13 with SelectfluorTM in the presence of NaHCO₃ followed by deprotection. Similarly, N^b -acetyl protected fluorooxindole-containing ethylamine **9a**–**c** were successfully synthesized as metabolic analogs of **7a**–**c**.

REFERENCES AND NOTES

- 1. P. Hewawasam, V. K. Gribkoff, Y. Pendri, S. I. Dworetzky, N. A. Meanwell, E. Martinez, C. G. Boissard, D. J. Post-Munson, J. T. Trojnacki, K. Yeleswaram, L. M. Pajor, J. Knipe, Q. Gao, R. Perrone, and J. E. Starrett, Jr., *Bioorg. Med. Chem. Lett.*, 2002, **12**, 1023.
- 2. a) J. Bégué and D. Bonnet-Delpon, 'Bioorganic and Medicinal Chemistry of Fluorine', John Wiley & Sons, New York, 2008; b) I. Ojima, J. R. McCarthy, and J. T. Welch, 'Biomedical Frontiers of Fluorine Chemistry', ACS Symposium Series 639, American Chemical Society, Washington, DC, 1996; c) R. Filler and Y. Kobayashi, 'Biomedicinal Aspects of Fluorine Chemistry', Kodansha/Elsevier Biomedical, Tokyo, 1982.
- 3. Y. Takeuchi, T. Shiragami, K. Kimura, E. Suzuki, and N. Shibata, *Org. Lett.*, 1999, **1**, 1571.
- 4. a) Y. Takeuchi, N. Shibata, E. Suzuki, Y. Iimura, T. Kosasa, T. Yamanishi, and H. Sugimoto, PCT Int. Appl. WO 2002020482; b) Chem. Abstr. 2002, **136**, 247496v; c) H. Fujisawa, T. Fujiwara, Y. Takeuchi, and K. Omata, *Chem. Pharm. Bull.*, 2005, **53**, 524; d) Y. Takeuchi, H. Fujisawa, T. Fujiwara, M. Matsuura, H. Komatsu, S. Ueno, and T. Matsuzaki, *Chem. Pharm. Bull.*, 2005, **53**, 1062.
- 5. T. Fujiwara, B. Yin, M. Jin, K. L. Kirk, and Y. Takeuchi, *J. Fluorine Chem.*, 2008, **129**, 829.
- 6. a) K. S. Bower, K. L. Price, L. E. C. Sturdee, M. Dayrell, D. A. Dougherty, and S. C. R. Lummis, *Eur. J. Pharmacol.*, 2008, **580**, 291; b) G. Spadoni, C. Balsamini, A. Bedini, A. Carey, G. Diamantini, B. D. Giacomo, A. Tontini, G. Tarzia, R. Nonno, V. Lucini, M. Pannacci, B. M. Stankov, and F. Fraschini, *Med. Chem. Res.*, 1998, **8**-**9**, 487.
- 7. a) R. S. Phillips, E. W. Miles, and L. A. Cohen, *Biochemistry*, 1984, **23**, 6228; b) Idem, *J. Biol. Chem.*, 1985, **260**, 14665; c) D. M. Kiick and R. S. Phillips, *Biochemistry*, 1988, **27**, 7339; d) M. Roy, E. W. Miles, R. S. Phillips, and M. F. Dunn, *ibid.*, 1988, **27**, 8661; e) R. S. Phillips, S. L. Bender, P. Brzovic, and M. F. Dunn, *ibid.*, 1990, **29**, 8608; f) R. B. Labroo and L. A. Cohen, *J. Org. Chem.*, 1990, **55**, 4901.
- 8. Y. Kiso, M. Inai, K. Kitagawa, and T. Akita, *Chem. Lett.*, 1983, 739.
- 9. Y. Takeuchi, T. Tarui, and N. Shibata, *Org. Lett.*, 2000, **2**, 639.
- 10. T. Umemoto, M. Nagayoshi, K. Adachi, and G. Tomizawa, *J. Org. Chem.*, 1998, **63**, 3379.
- 11. General procedure for the fluorination of the protected tryptamines: SelectfluorTM (283.4 mg, 0.800) mmol) was added to a solution of N^b , N^b -di-(*tert*-butoxycarbonyl)-5-fluorotryptamine (13) (75.7 mg,

0.200 mmol) in a mixture of MeCN and water (1:1, 4 mL) at rt. After stirring for 20 h, the mixture was concentrated and extracted with EtOAc. The organic layer was washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by silica gel column chromatography (eluent; hexane/EtOAc = 3/1) to give the corresponding 3-fluorooxindole **14** (60.5 mg, 0.147 mmol, 73%) as a colorless glass, together with the corresponding oxindole derivative (4.1 mg, 0.010 mmol, 5%) as a colorless oil: IR (KBr) ν 3430, 3315, 2979, 2933, 1759, 1734, 1701, 1676, 1631, 1487 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.48 (18H, s), 2.35–2.50 (2H, m), 3.71–3.78 (2H, m), 6.88 (1H, ddd, *J* = 8.5, 4.1, 0.9 Hz), 7.05 (1H, tt, *J* = 9.2, 2.3 Hz), 7.16 (1H, dt, *J* = 7.3, 2.3 Hz), 8.62 (1H, br s); 19F NMR (376 MHz, CDCl3) δ –119.46 (1F, dddd, *J* = 9.2, 7.3, 4.1, 1.8 Hz), –159.14 (1F, t, *J* = 16.2 Hz); MS (EI) m/z : 412 (M⁺), 356 (M⁺-C₄H₈), 300 (M⁺-C₈H₁₆); HRMS (EI) calcd for $C_{20}H_{26}F_2N_2O_5$ (M⁺): 412.1810; found 412.1794.

- 12. Synthesis of **8**: To a solution of **14** (23.7 mg, 0.058 mmol) in AcOH (0.5 mL) was added 25% $HBr/AcOH$ (0.5 mL) at 0 °C. After stirring at rt for 10 min, the mixture was concentrated in vacuo to give HBr salt of 8 (16.7 mg, 0.057 mmol, 99%) as a pale yellow solid: mp 136 $^{\circ}$ C (decomp.); IR (KBr) v 3700–3100 (br), 3215, 3033, 1739, 1634, 1490 cm⁻¹; ¹H NMR (400 MHz, CD₃OD) δ 2.31 (1H, dddd, *J* = 27.0, 14.9, 7.8, 6.9 Hz), 2.58 (1H, dddd, *J* = 14.9, 13.5, 7.8, 6.9 Hz), 3.29 (2H, br m), 6.94 (1H, ddd, *J* = 8.5, 4.1, 1.4 Hz), 7.17 (1H, dddd, *J* = 9.2, 8.7, 2.7, 1.8 Hz), 7.31 (1H, dt, *J* = 7.8, 2.7 Hz); 19F NMR (376 MHz, CD3OD) δ –119.67 (1F, dddd, *J* = 9.2, 7.8, 4.1, 1.8 Hz), –160.00 (1F, m); MS (FAB⁺) *m/z*: 213 (M⁺-Br); HRMS (FAB⁺) calcd for C₁₀H₁₁F₂N₂O (M⁺-Br): 213.0840; found 213.0854, (FAB⁻) calcd for $C_{10}H_{10}BrF_2N_2O$ (M⁺-H): 290.9945; found 290.9942.
- 13. The N^b -acetyl moiety will be subjected to electrophilic fluorination thus giving unidentified oxidized products.
- 14. General procedure for the acid deprotection of the Boc group of **16a**–**c**: To a solution of **16a** (19.9 mg, 0.056 mmol) in AcOH (1 mL) was added 25% HBr/AcOH (1 mL) at 0 °C. After stirring for 10 min at rt, the mixture was poured into saturated aqueous $NaHCO₃$ and then extracted with EtOAc. The organic layer was washed with brine, dried over $Na₂SO₄$, and concentrated in vacuo. The residue was purified by silica gel column chromatography (eluent; EtOAc/MeOH = 40/1) to give **9a** (13.2 mg, 0.052 mmol, 93%) as a colorless solid: mp 170-172 °C; IR (KBr) ν 3441, 3353, 1732, 1722, 1653, 1636, 1554, 1489 cm⁻¹; ¹H NMR (400 MHz, CD₃OD) δ 1.82 (3H, s), 2.34 (2H, dt, *J* = 15.1, 7.3 Hz), 3.20 (1H, dt, *J* = 13.7, 7.3 Hz), 3.25 (1H, dt, *J* = 13.7, 7.3 Hz), 6.90 (1H, dd, *J* = 7.8, 3.7 Hz), 7.11 (1H, tt, $J = 8.7$, 1.8 Hz), 7.27 (1H, dt, $J = 7.8$, 1.8 Hz); ¹⁹F NMR (376 MHz, CD₃OD) δ -120.28 (1F, m), -155.90 (1F, t, $J = 15.3$ Hz); MS (EI) m/z : 254 (M⁺), 192 (M⁺-F-CH₃CO); HRMS (EI) calcd for $C_{12}H_{12}F_2N_2O_2$ (M⁺): 254.0867; found 254.0869.